Area Chair, International Conference on Machine Learning (ICML), 2023-現在.
情報処理学会(IPSJ)副会長, 2021年6月-2023年5月.
Program Committee, Asian Conference on Machine Learning (ACML), 2019-現在.
日本メディカルAI学会 評議員, 2018年4月-現在.
Special Session Organizer, The 50th ISCIE International Symposium on Stochastic Systems Theory and Its Applications(SSS), 2018.
日本メディカルAI学会 評議員, 2018年4月-現在.
Program Committee, 3rd EAI International Conference on IoT in Urban Space(Urb-IoT 2018), 2018.
Reviewer, Advances in Neural Information Processing Systems (NIPS), 2017.
Program Committee, Twentieth International Conference on Artificial Intelligence and Statistics(AISTATS 2017), 2017.
Program Committee, The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2017.
Program Committee, The 2nd EAI International Conference on IoT in Urban Space2016, 2016.
Program Committee, The 2nd International Workshop on Smart Cities(IWSC): People, Technology and Data, 2016.
Reviewer, International Conference on Machine Learning (ICML), 2016-現在.
Organizing Committee, The 1st International Workshop on Smart Cities: People, Technology and Data, The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Ubicomp 2015), 2015.
Organizing Committee, The 47th ISCIE International Symposium on Stochastic Systems Theory and Its Applications (ISSS2015), 2015.
Senior Program Committee, International Joint Conference on Artificial Intelligence (IJCAI)-European Conference on Artificial Intelligence (ECAI), Machine Learning Track, 2015-present.
Area Chair, The Neural Information Processing Systems Conference (NIPS), 2015, 2019.
"Bayesian Meta-learning and its Application to High-Level Real Nursing Activity Recognition Using Accelerometers"(研究集会 Forum "Math-for-Industry"2013, 於:九州大学西新プラザ), 2013年11月5日.
"Basics of Bayesian Modeling in Machine Learning"(MLMI 2013, A MICCAI 2013 Workshop, Nagoya), 2013年9月22日.
Tokunaga, J., Kikukawa, Y., Ebara, H., Ueda, N. : "Fast and accurate evacuation planning algorithm with Bayesian optimization," ACM Trans. On Intelligent Systems and Technology, 2024.
Hamamoto, R., Komatsu, M., Yamada, M., Kobayashi, K., Takahashi, M., Miyake, M., Jinnai, S., Koyama, T., Kouno, N., Machino, H., Takahashi, S., Asada, K.,Ueda, N., Kaneko, S. " Current status and future direction of cancer research using artificial intelligence for clinical application,"Clinical Research, 2024.
Ayukawa, Y., Ueda, N., Tanaka, T., "Improving the efficiency of training physics-informed neural networks using active learning", New Generation Computing, vol. 42, pp.739-760, 2024.
Okazaki, T., Hirahara, K. & Ueda, N. "Fault geometry invariance and dislocation potential in antiplane crustal deformation: physics-informed simultaneous solutions", Prog Earth Planet Sci 11, 52, 2024.
Hachiya, H., Tarasuki, Y., Iwaki, A., Maeda, Y., Ueda, N., Fujiwara, H., "Interpretable deep inpainting based on subsurface structure data for spatial interpolation of seismic motions", Japan Association for Earthquake Engineering, JAEE24-079.R1, 2024.
Takahashi, A., Hokari, H., Doi, M., Yoshikawa, N., Mariyama, T., Ueda, N., & Hirai, N. (2024). Using active cooling/heating for 1C1R grey-box model parameter identification in actual environment: A proof-of-concept study. Building Services Engineering Research & Technology, 01436244241252258.
Niwa, K., Ueda, N., Sawada, H., Fujino, A., Takeda, S., "CoordiNet: Constrained Dynamics Learning for State Coodination Over Graph,"IEEE Trans. On Signal and Information Processing Over Networks, vol.9, pp.242-257, 2023.
Mulia,I.E.,Ueda,N.,Miyoshi,T.,Iwamoto,T.& Heidarzadeh,M.A novel deep learning approach for typhoon-induced storm surge modeling through efficient emulation of wind and pressure fields. Scientific Reports 13,7918, doi:10.1038/s41598-023-35093-9, 2023.
Saeidi,V.,Seydi,S.T.,Kalantar,B.,Ueda,N.,Tajfirooz,B.,& Shabani,F.,"Water depth estimation from Sentinel-2 imagery using advanced machine learning methods and explainable artificial intelligence",Geomatics,Natural Hazards and Risk,14(1),2225691,2023.
Takahashi,A.,Hokari,H.,Doi,M.,Yoshikawa,N.,Mariyama,T.,Ueda,N.,and Hirai,N.,"Using active cooling/heating for 1C1R gray-box model parameter identification in actual environment: a proof-of-concept study," Building Services Engineering Research & Technology (Sage Journals) (in preparation)
Mulia,I.E.,Ueda,N.,Miyoshi,T.,Iwamoto,T.& Heidarzadeh,M.A novel deep learning approach for typhoon-induced storm surge modeling through efficient emulation of wind and pressure fields. Scientific Reports 13,7918,2023. doi:10.1038/s41598-023-35093-9.
Hachiya,H.,Nagayoshi,K.,Iwaki,A.,Maeda,T.,Ueda,N.,Fujiwara,H.,"Position-dependent partial convolutions for supervised spatial interpolation,"Machine Learning with Applications,100514-100514,2023.
Hachiya,H.,Masumoto,Y.,Kudo,A.,and Ueda,N.,"Encoder-decoder-based image transformation approach for integrating multiple spatial forecasts,"Machine Learning with Applications 12(100473) 1-11,2023.
Murakami,S.,Fujita,K.,Ichimura,T.,Hori,T.,Hori,M.,Lalith,M.,and Ueda,N.,"Development of 3D viscoelastic crustal deformation analysis solver with data-driven method on GPU, Lecture Notes in Computer Science, vol 14074,2023, https://doi.org/10.1007/978-3-031-36021-3_45
Mulia, I. E., Ueda, N., Miyoshi, T., Iwamoto, T. & Heidarzadeh, M. A novel deep learning approach for typhoon-induced storm surge modeling through efficient emulation of wind and pressure fields. Scientific Reports 13, 7918 (2023). doi: 10.1038/s41598-023-35093-9
Hachiya, H., Masumoto, Y., Kudo, A., and Ueda,N.,"Encoder-decoder-based image transformation approach for integrating multiple spatial forecasts,," Machine Learning with Applications, Vol.12, No.5, 2023.
Okazaki, T., Ito, T., Hirahara., and Ueda, N., "Physics-informed deep learning approach for modeling crustal deformation," Nature Communications, 13, 7092, 2022.
Mulia, I., Ueda, N., Miyoshi, T., Gusman, A.R. and Satake, K., "Machine learning-based tsunami inundation prediction derived from offshore observations," Nature Communications, 13, 5489, 2022.
Okazaki, T., Fukuhata, Y., and Ueda, N., "Time variable stress inversion of centroid moment tensor using Gaussian processes," Journal of Geophysical Research (JGR): Solid Earth, 2022.
Takahashi, I., Hamasaki, R., Ueda, N., Tanaka, M., Tominaga, N., Sako, Shigeyuki, Ohsawa, R., and Yoshida, N., "Deep-learning real/bogus classification for the Tomo-e Gozen transient survey," Publication of the Astronomical Society of Japan, Vol.74, Issue 4, pp.946--960, 2022.
Saed, F. G., Noori, A. M., Kalantar, B., Oader, W. M., and Ueda, N., "Earthquake-induced ground deformation assenment via sentinel-1 rader aided at Darbandikhan town," Journal of Sensors, Vol. 2022, Article ID 2020069, 2022.
Seydi, S. T., Saeidi, V., Kalantar, B., Ueda., N Genderen, V., Maskouni, F. H., and Aria, F. A.,"Fusion of the multisource datasets for flood extent mapping based on ensemble convolutional neural network (CNN) model," Journal of Sensors, Vol.2022, ID 2887502, 2022.
Okazaki, T., N. Morikawa, A. Iwaki, H. Fujiwara, T. Iwata, N. Ueda., "Ground-Motion Prediction Model Based on Neural Networks to Extract Site Properties from Observational Records," Bulletin of the Seismological Society of America, 2021.
Okazaki, T., H. Hachiya, A. Iwaki, T. Maeda, H. Fujiwara, N. Ueda., "Broad-band ground motions with consistent long-period and short-period components using Wasserstein interpolation of acceleration envelopes," Geophysical Journal International, 2021.
Ojogbane, S. S., Mansor, S., Kalantar, B., Khuzaimah, Z. B., Shafri, H. Z. M., & Ueda, N., "Automated Building Detection from Airborne LiDAR and Very High-Resolution Aerial Imagery with Deep Neural Network," Remote Sensing, 13(23), 2021.
Al-Dogom, D., Al-Ruzouq, R., Kalantar, B., Schuckman, K., Al-Mansoori, S., Mukherjee, S., & Ueda, N., "Geospatial multicriteria analysis for earthquake risk assessment: Case Study of Fujairah City in the UAE," Journal of Sensors, 2021.
Jumaah, H. J., Kalantar, B., Halin, A. A., Mansor, S., Ueda, N., & Jumaah, S. J., "Development of UAV-based PM2. 5 monitoring system. Drones," 5(3), 2021.
Tehrany, M. S., Özener, H., Kalantar, B., Ueda, N., Habibi, M. R., Shabani, F., & Shabani, F., "Application of an ensemble statistical approach in spatial predictions of bushfire probability and risk mapping," Journal of Sensors, 2021.
Ameen, M. H., Jumaah, H. J., Kalantar, B., Ueda, N., Halin, A. A., Tais, A. S., & Jumaah, S. J., "Evaluation of PM2. 5 particulate matter and noise pollution in Tikrit University based on GIS and statistical modeling, Sustainability," 13(17), 2021.
Hamed, H. H., Jumaah, H. J., Kalantar, B., Ueda, N., Saeidi, V., Mansor, S., & Khalaf, Z. A., "Predicting PM2. 5 levels over the north of Iraq using regression analysis and geographical information system (GIS) techniques. Geomatics, Natural Hazards and Risk," 12(1), pp.1778-1796, 2021.
Futami, F., Iwata, T., Ueda, N., and Sato, I., "Accelerated diffusion-based sampling by the non-reversible dynamics with skew-symmetric matrices," Special Issue Approximate Bayesian Inference, Entropy, 2021.
Okazaki, T., Morikawa, N., Fujiwara, H., and Ueda, N., "Monotonic neural network for ground motion predictions to avoid overfitting to recorded site, " Seismological Research Letters, 2021.
Okawa, M., Owata, T., Kurashima, T., Tanaka, Y., Toda, H., and Ueda, N., "Deep mixture point processes, " Transaction of the Japanese Society for Artificial Intelligence. 2021.
Fujiwara, Y., Kanai, S., Ida, Y., Kumagai, A., and Ueda, N.,"Fast algorithm for anchor graph hashing," Proc. of the VLDB Endowment, Vol.14, Issue 6, 2021.
Tanaka, Y., Iwata, T., Kurashima, T., Ueda, N., Tanaka, T., "Time-delayed collective flow diffusion models for inferring latent people flow from aggregated data at limited locations," Artificial Intelligence, Vol.292, 103430, 2021.
Kalantar, B., Ueda, N.,Saeidi, V.,Ahmadi, K.,Halin, A.A., & Shabani, F., "Landslide susceptibility mapping: Machine and ensemble learning based on remote sensing big data," Remote Sensing, 12(11), 1737, 2020.
Takahashi, I, Suzuki, Nao, Yasuda, N., Kimura, A., Ueda, N., Tanaka, M., Tominaga, N., Yoshida, N., "Photometric classification of hyper suprime-cam transients using machine learning," Publications of the Astronomical Society of Japan, Vol.72, Issue 5, 89, pp.1-22, 2020.
Iwata, T., Toyoda,M., Tora,S., and Ueda,N., "Anomaly Detection with Inexact Labels," Machine Learning, Vol.109, Issue. 8, pp.1617-1633, 2020.
Gibril, M. B. A., Kalantar, B., Al-Ruzouq, R., Ueda, N., Saeidi, V., Shanableh, A., Mansor, S., and Shafri, H. Z. M., "Mapping heterogeneous urban landscapes from the fusion of digital surface model and unmanned aerial vehicle-based images using adaptive multiscale image segmentation and classification," Remote Sensing, 2020,12(7), 1081; https://doi.org/10.3390/rs12071081, 2020.(to appear).
Yamamoto, Y., Tsuzuki, T., Akatsuka, J., Ueki, M., Morikawa, H., Numata, Y., Takahara, T., Tsuyuki, T., Shimizu, A., Maeda, K., Tsuchiya, S., Kanno, H., Kondo, Y., Tamiya, G., Ueda, N., and Kimura, G., "Automated acquisition of explainable knowledge from unannotated," Nature Communications, 10, 5642 2019.
Kalantar, B., Al-Najjar, H.A.H., Pradhan, B., Saeidi, V., Halin, A.A, Ueda, N., Naghibi., S.A.,"Optimized conditioning factors and machine learning for groundwater potential mapping," Water Journal, 2019.
Al-Najjar, H. A., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A. A., Ueda, N., and Mansor, S.,"Land cover classification from fused DSM and UAV images using convolutional neural networks", Remote Sensing, 11(12), 1461, 2019.
Yasuda, N., Tanaka, M., Tominaga, N., Jiang, J., Moriya, T., Morokuma, T., Suzuki, N., Takahashi, I., Yamaguchi, M., Maeda, K., Sako, M., Ikeda, S.,Kimura, A., Morii, M., Ueda, N., Yoshida, N., Lee, C., Suyu, S., Komiyama, Y., Regnault, N., and Rubin, D., "The Hyper Suprime-cam SSP transient survey in COSMOS: Overview,"Publications of the Astronomical Society of Japan, vol.71, No.4, pp.1--16, 2019.
Ueda, N., asd Fujino, A., "Partial auc maximization via nonlinear scoring functions," Xiv submit/2294250, 2018.
Ueda, N., and Naya, F., "Spatio-temporal multidimensional collective data analysis for providing comfortable living anytime and anywhere," APSIPA Transactions on Signal and Information Processing, Vol.7, No.4, 2018.
Iwata, T., Hirao, T., Ueda, N.,"Topic models for unsupervised cluster matching," IEEE Transactions on Knowledge and Data Engineering, Volume:30, Issue:4, pages 786--795, 2018.
Iwata, T., Shimizu, H., Naya, F. and Ueda, N., "Estimating people flow from spatio-temporal population data via collective graphical mixture models," ACM Transactions on Spatial Algorithms and Systems, Vol. 3, Issue 1, Article 39. 2017.
Ishiguro, K., Sato, I. and Ueda, N., "Averaged collapsed variational Bayes inference," Journal of Machine Learning Resaerch (JMLR), Volume 18, Number 1, pp.1--29, 2017.
Morii, M., Ikeda, S., Tominaga, N., Tanaka, M., Morokuma, T., Ishiguro, K., Yamato, J., Ueda, N., Suzuki, N., Yasuda, N. and Yoshida, N., "Machine-learning selection of optical transients in Subaru/hyper suprime-cam survey," Publication of Astronomical Society of Japan, Vol.68, No.6, pp.104-112, 2016.
Inoue, S., Ueda, N., Nohara, Y. and Nakashima, N., "Recognizing and understanding nursing activities for a whole day with a big data set," Journal of Information Processing, Vol.57, No.10, 2016.
Iwata, T., Hirao T. and Ueda, N., " Unsupervised many-to-many object matching via probabilistic latent variable models,"Information Processing & Management, Volume 52, Issue 4, pp682-697, July 2016.
Blondel, M., Onogi, A., Iwata, H. and Ueda, N., "A Ranking Approach to Genomic Selection,"PLOS ONE (peer-reviewed open acces journal), Public Library of Science, 2015.
Nohara, Y., Kai, E., Ghosh, P., Islam, R., Ahmed, A., Kuroda, M., Inoue, S., Hiramatsu, T., Kimura, M., Shimizu, S., Kobayashi, K., Baba, Y., Kashima, H., Tsuda, K., Sugiyama, M., Blondel, M., Ueda, N., Kitsuregawa, M. and Nakashima, N., "Health Checkup and Telemedical Intervention Program for Preventive Medicine in Developing Countries: Verification Study," Journal of Medical Internet Research, Vol.17, No.1 January 2015.
田中祐典,上田修功.田中利幸, "クラス固有の特徴選択に基づくベイズ分類器," 電子情報通信学会和文論文誌(D-II), Vol.J96-D, No.11, pp.2755-2764, 2013. Sun, X. Kashima, H. and Ueda, N., "Large-Scale Personalized Human Activity Recognition using Online Multi-Task Learning, "IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol.25, No.11, pp.2551-2563, 2013. [IEEE Copyright Notice]
Sawada, H., Kameoka, H., Araki, S. and Ueda, N., "Multichannel Extensions of Non-negative Matrix Factorization with Complex-valued Data," IEEE Transactions on Audio, Speech, and Language Processing, Vol.21, No.5, pp.971-982, 2013. [IEEE Copyright Notice]
Iwata, T., Yamada, T. and Ueda, N., "Modeling Noisy Annotated Data with Application to Social Annotation," IEEE Transactions on Knowledge and Data Engineering, Vol.25, No.7, pp.1601-1613, 2013. [IEEE Copyright Notice]
Fujino, A., Ueda, N. and Nagata, M., "Adaptive semi-supervised learning on labeled and unlabeled data with different distributions," Knowledge and Information Systems(KAIS), Vol. 37, Issue 1, pp. 129-154, Springer, 2013, (invited paper).
Iwata, T., Yamada, T., SakuraI, Y. and Ueda, N., "Sequential Modeling of Topics Dynamics with Multiple Timiscales," ACM Transactions on Knowledge Discovery from Data (TKDD), Volume 5 Issue 4, 19:1-19:27, 2012.
Hachiya, H., Sugiyama, M. and Ueda, N., "Importance-weighted least-squares probabilistic classifier for covariate shift adaptation with application to human activity recognition," Neurocomputing, Vol. 80, pp 93-101, 2012.
Iwata, T., Tanaka, T., Yamada, T. and Ueda, N., "Improving Classifier Performance Using Data with Different Taxonomies," IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol.23, No.11, 1668-1677, 2011.[IEEE Xplore] [IEEE Copyright Notice],
Fujino, A., Ueda, N. and Saito, K., "Semisupervised learning for a hybrid generative/discriminative classifier based on the maximum entropy principle," IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol.30, No.3, pp.424-437, 2008, [IEEE Xplore] [DOI link] [IEEE Copyright Notice].
桑田修平, 山田武士, 上田修功, "ディリクレ過程混合モデルに基づく離散データの共クラスタリング, "情報処理学会論文誌:数理モデル化と応用, pp. 60-73, 2008, [情報処理学会].
Naud, A., Usui, S., Ueda, N. and Taniguchi T., "Visualization of documents and concepts in Neuroinformatics with the 3D-SE Viewer," Neuroinformatics, 2007.
Kuwata, S. and Ueda, N., "An efficient collaborative filtering algorithm based on marginal rating distributions," International Journal of IT & IC, IEEE CIS, Vol.2, No.1, 2007.
Fujino, A., Ueda, N. and Saito, K., "A hybrid generative/discriminative approach to text classification with additional information," Information Processing & Management, Elisevier, Vol.43, No.2, pp. 379-392, 2007.
Usui, S., Plames, P., Nagata, K., Taniguchi, T. and Ueda, N., "Keyword extraction, ranking, and organization for the neuroinfomatics platform," Biosystems, Elsevier Science, Vol.88, Issue 3, pp. 334-342, 2007, [Biosystems]. Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths, T. and Tenenbaum, J., "Parametric Embedding for Class Visualization," Neural Computation Vol. 19, No. 9, pp. 2536-2556, 2007.
Kawamae, N., Yamada, T. and Ueda, N.,"Personalized Ranking by Identifying, RelativeInnovators," FIT2007 L, Vol.6, pp.99-102, 2007.
藤野昭典, 上田修功, 斉藤和巳, "半教師あり学習のための生成・識別ハイブリッド分類器の設計法人工知能学会論文誌, Vol.21, No.3, pp. 301-309, 2006.
Ueda, N. and Saito, K., "Parametric mixture models for multi-topic text," Systems and Computers in Japan, Vol.37, No.2, pp. 56-66, 2006, [Systems and Computers in Japan].
Kimura, M., Saito K. and Ueda, N., "Modeling network growth with directional attachment and communities," Systems and Computers in Japan, Vol. 35, No. 8, pp. 1-11, 2004, [Systems and Computers in Japan].
岩田具治, 斉藤和巳, 上田修功, "事後確率構造の可視化," 情報科学技術レターズ, Vol. 3, pp. 119-120, 2004.
Kimura, M., Saito, K. and Ueda, N., "Modeling share dynamics by extracting competition structure," Physica D, Vol.198, pp. 51-73, 2004.
Watanabe, S., Minami, Y., Nakamura, A. and Ueda, N., "Variational Bayesian Estimation and Clustering for Speech Recognition," IEEE transaction on Speech and Audio Processing, Vol. 12, pp.365-381, 2004.
Kimura, M., Saito, K. and Ueda, N., "Modeling of growing networks with directional attachment and communities," Neural Networks, Vol. 17, No. 7, pp. 975--988, 2004.
Ueda, N. and Inoue, M., "Extended Tied-Mixture HMMs for Both Labeled and Unlabeled Time Series Data," Journal of VLSI Signal Processing Systems, Vol. 37, pp. 189-197, 2004.
木村昌弘, 斉藤和巳, 上田修功, "指向性アタッチメントとコミュニティをもつ成長ネットワークモデル," 電子情報通信学会論文誌, Vol. J86-DII, No, 10, pp. 1468-1479, 2003.
Inoue, M. and Ueda, N., "Exploitation of unlabeled sequences in hidden markov models," IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), Vol. 25, No. 12, pp1570-1581, 2003.
Ueda, N. and Ghahramani, Z., "Bayesian model search for mixture models based on optimizing variational bounds," Neural Networks, Vol. 15, No.10, pp. 1223-1241, 2002.
Ueda, N., Nakano, R., Ghahramani, Z. and Hinton, G. E., "SMEM algorithm for mixture models," Neural Computation, Vol. 12, No. 9, pp. 2109-2128, 2000.
Ueda, N., Nakano, R., Ghahramani, Z. and Hinton, G. E., "Split and merge EM algorithm for improving Gaussian mixture density estimates (invited), "Journal of VLSI Signal Processing, Vol. 26, pp.133-140Z, 2000.
Ueda, N., "Optimal linear combination of neural networks for improving classification performance," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 22, No. 2, pp. 207-215, 2000.
上田修功, 中野良平, "確定的アニーリングEMアルゴリズム," 電子情報通信学会論文誌(D-II), Vol.J80-DII, No.1, pp. 267-276, 1997.
Ueda, N. and Mase, K., "Tracking moving contours using energy-minimizing elastic contour models," International Journal of Pattern Recognition and Artificial Intelligence, Vol. 9, No. 3, pp. 465-484, 1995.
Ueda, N. and Nakano, R., "A new competitive learning approach based on an equidistortion principle for designing optimal vector quantizers," Neural Networks, Vol.7, No.8, pp. 1211-1227, 1994.
Ueda, N. and Suzuki, S., "Learning visual models from shape contours using multiscale convex/concave structure matching," IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 15, No. 4, pp. 337-352, 1993, [IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)].
Suzuki, S., Ueda, N. and Sklansky, J., "Graph-Based Thinning for Binary Images," International Journal of Pattern Recognition and Artificial Intelligence, Vol. 7, No. 5 pp. 1009-1030, 1993.
Hachiya, H., Nagayoshi, K., Iwaki, A., Maeda, Y., Ueda, N., Fujiwara, H., " MLP-Mixer based surrogate model for seismic ground motion with spatial source and geometry parameters", Proc. of Asian Conference on Machine Learning (ACML2024), 2024.
Tanaka, Y., Iwata, T., Ueda, N., "Neural operators for Hamiltonian and dissipative PDEs", Proc. of International Conference on Scientific Computation and Differenctial Equations", SciCADE2024, 2024.
Okazaki, T., Ito, T., Hirahara, K., Ueda, N., "Physics Informed Deep Learning for Modeling Coseismic Crustal Deformation," European Geosciences Union General Assembly, EGU23-1344, 2023.
Kalantar,B.,Ueda,N.,Zand,M.,& Al-Najjar,H.,"Moving object detection by low-rank analysis of region-based correlated motion fields," GARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, (pp. 5874-5877), 2023.
Fujiwara, Y., Nakano, M., Kumagai, A., Ida, Y., Kimura, A., and Ueda, N., "Fast binary network hashing via graph clustering," Proc. of IEEE Conference on Bigdata, 2022.
Ichimura, T., Fujita, K., Koyama, K., Kusakabe, R., Kikuchi, Y., Hori, T., Hori, M., Maddegedara, L., Ohi, N., Nishiki, T., Inoue, H., Minami, K., Nishizawa, S., Tsuji, M., and Ueda, N., "152K-computer-node parallel scalable implicit solver for dynamic nonlinear earthquake simulation, " Proc. of the International Conference on High Performance Computing in Asia-Pacific Region, HPC Asia 2022. (Best Paper Finalists)
Tanaka, Y., Iwata, T., and Ueda, N., "Symplectic spectrum Gaussian processes: Learning a Hamiltonian from Noisy and sparse data, " Proc. of Neural Information Processing Systems, NeurIPS2022.
Mulia, I. E., Ueda, N., Miyoshi, T., Gusman, A. R., Satake, K., "Method for real-time prediction of tsunami inundation directly from offshore observations using machine learning," AGU Fall Meeting 2021, virtual meeting, 13-17 December 2021.
Hachiya, H., Nagayoshi, K., Iwasaki, A., Maeda, T., Ueda, N., and Fujiwara, H, "Position-dependent partial convolutions for supervised spatial interpolation, " Proc. of The 14th Asian Conference on Machine Learning (ACML), 2022.
Tanaka, Y., Iwata, T., and Ueda, N., "Symplectic Spectrum Gaussian Processes: Learning a Hamiltonian from Noisy and Sparse Data," Proc of Neural Information Processing Systems, NeurIPS2022.
Kalantar, B., Ojogbane,S. S., Seydi,S. T., Halin, A., Mansor, S., Ueda,N, "A deep learning approach for automated building outlines extraction in compact urban environments," Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2022.
Kalantar, B., Seydi, S. T., Ueda,N., Saeidi, V., Halin, A. A., Shabani, F.,"Deep ensemble learning for land cover classification based on hyperspectral prisma image," Proc. of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2022.
Nakano, M., Nishikimi, R., Fujiwara, Y., Kimura, A., Yamada, T., and Ueda, N., "Nonparametric relational models with superrectangulation," Proc. of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS2022), 2022.
Fujiwara, Y., Ida, Y., Kumagai, A., kanai, S., and Ueda, N., "Fast and accurate anchor graph-based label prediction,"Proc of the 30th ACM International Conference on Information and Knowledge Management (CIKM), pp.504--513, 2021.
Jumaah, H. J., Kalantar, B., Ueda, N., Sani, O. S., Ajaj, Q. M., & Jumaah, S. J., "The effect of war on land use dynamics in mosul Iraq using remote sensing and GIS techniques," In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS (pp. 6476-6479), 2021.
Fujita, K., Kikuchi, Y., Ichimura, T., Hori, M., Maddegedara, L., and Ueda, N., "GPU porting of scalable implicit solver with Green's function-based neural networks by open ACC," Proc. of Eighth Workshop on Accelerator Programming using Directives (WACCPD), 2021.
Futami, F., Iwata, T., Ueda, N., Sato, I., and Sugiyama, M., "Loss function based second-order Jensen inequality and its application to particle variational inference, " Proc. of Neural Information Processing Systems, NeurIPS 2021.
Nakano, M., Fujiwara, Y., Kimura, A., Yamada, T., and Ueda, N., "Permuton-induced Chinese restaurant process," Proc. of Neural Information Processing Systems, NeurIPS 2021.
Yamagishi, Y., Saito, K., Hirahara, K., and Ueda, N., "Constructing weighted networks of earthquakes with multiple-parent nodes based on correlation-metric," Proc. of International Conference on Complex Networks and their Applications, COMLEX NETWROKS2021.
Nakano, M., Fujiwara, Y., Kimura, A., Yamada, T., and Ueda, N., "Bayesian nonparametric model for arbitrary cubic partitioning," Proc. of Asian Conference on Machine Learning (ACML2021), 2021.
Futami, F., Iwata, T., Sato, I,, and Ueda, N., "Skew symmetrically perturbed gradient flow for convex optimization," Proc. of Asian Conference on Machine Learning (ACML2021), 2021.
Hachiya, H., Masamoto, Y., Mori, Y., and Ueda, N., "Encoder-decoder-based image transformation approach for integrating precipitation forecasts," Proc. of Asian Conference on Machine Learning (ACML2021), 2021.
Yamagishi, Y., Saito,K., Hirahara, K., and Ueda, N., "Magnitude-weighted mean-shift clustering with leave-one-out bandwidth estimation," Proc. of Pacific Rim International Conference on Artificial Intelligence (PRICAI2021), 2021.
Nakano, M., Kimura, A., Yamada, T, and Ueda, N., "Baxter permutation process, " Proc. of Neural Information Processing Systems, NeurIPS 2020.
Yamaguchi, Y., Saito, K., Hirahara, K., and Ueda, N., "Spatio-temporal clustering of earthquakes based on average magnitudes," Proc. of International Conference on Complex Networks and their Applications, 2020.
Yamaguchi, T., Ichimura, T., Fujita, K., Hori, M., Wijerathne, L., and Ueda, N., "Data-driven approach to inversion analysis of three-dimensional inner soil structure via wave propagation analysis," Proc. of International Conference on Computational Science (ICCS-2020).
Fujiwara、Y., Kumagai, A., Kanai, S., Ida, Y., and Ueda, N.,"Efficient algorithm for the b-matching graph," proc. of ACM SIG-KDD 2020.
Miyoshi, T., Honda,T., Otsuka,S., Amemiya, A., Maejima,Y., Ishikawa, Y., Seko, H.,Yoshizaki,Y., Ueda,N., Tomita, H., Ishikawa,Y., Satoh,S., Ushio,T., Koike,K., and Nakada, Y., "Big data assimilation: Real-time workflow for 30-second-update forecasting and perspectives toward DA-AI integration," Proc. of EGU General Assembly, EGU2020-2483, 2020.
Kalantar, B., Ueda, N., Al-Najjar, H. A. H.Saeidi, V., Gibril, M. B. A, Halin, A.,"A comparison between three conditioning factors dataset for landslide prediction in the Sajadrood Catchment of Iran," Proc. of ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS),2020 (to appear).
Yamaguchi, T., Ichimura, T., Fujita, K., Naruse,A., Wells,J.C., Zimmer, C. J., Straatsma,T.P., Hori,M., Lalith, W., and Ueda, N., "Implicit low-order finite element solver with small matrix-matrix multiplication accelerated by AI-specific hardware," Proc. Of Platform for Advanced Scientific Computing Conference (PASC2020), 2020 (accepted).
Ichimura, T., Fujita, K., Yamaguchi, T., Hori, M., Wijerathne, L., and Ueda, N, "Fast multi-step optimization with deep learning for data-centric supercomputing," The 4th International Conference on High Performance Compilation, Computing and Communications, 2020 (accepted) .
Iwata, T., Fujino, A., Ueda, N., "Semi-supervised Learning for maximizing the partial AUC," Proc. of Association for the Advancement of Artificial Intelligence (AAAI2020), 2020.
Hachiya, H., Hirahara,K.,and Ueda, N.,"Machine learning approach for adaptive integration of multiple relative intensity models toward improved earthquake forecasts in Japan," International Union of Geodesy and Geophysics (IUGG2019),2019.
Hachiya, H., Yamamoto, Y., Hirahara, K, and Ueda, N., "Adaptive truncated residual regression for fine-grained regression problems," Proc. of Asian Conference on Machine Learning (ACML), 2019.
Miyoshi, T., Otsuka, S., Honda, T., Lien, G., Maejima, Y., Ohhigashi, M., Yoshizaki, Y., Seko, H., Tomita, H., Satoh, S., Ushio, T., Gerofi, B., Ishikawa, Y., Ueda, N., Koike, K., Nakada, Y., "Big data assimilation: Past 6 years and future plans," AMS 39th Conference on Radar Meteorology, 2019. *AMS: American Meteorological Society
Otsuka,T.,Shimizu,H.,Iwata,T.,Naya,F.,Sawada,H., and Ueda,N., "Bayesian optimization for crowd traffic control using multi-agent simulation," Proc. Intelligent transportation systems conference (ITSC), 2019. Omi, T, Ueda, N, and Aihara, K,"Fully neural based model for general temporal point processes," Proc. Neural Information Processing Systems, NeuriPS2019.
Okazaki, T, Hachiya, H, Ueda, N., Iwaki, A., Maeda, T. and Fujiwara, H.,"Synthesis of broadband ground motions using embedding and neural networks," Geophysical Research Abstracts, Vol. 21, EGU2019-4590, EGU General Assembly 2019.
Ichimura,T., Fujita, K.,Yamaguchi, T., Naruse,A., Wells, J.C., Zimmer, C. J.,Straatsma,T.,Hori, T., Puel,S., Becker, T.W., Hori,M., and Ueda, T,"2416-PFLOPS fast scalable implicit solver on low-ordered unstructured finite elements accelerated by 1.10-ExaFLOPS kernel with reformulated AI-like algorithm: For equation-based earthquake modeling," Proc. of International Conference for High Performance Computing, Networking, Storage, and Analysis (SC2019). 2019.
Kalantar, B., Ueda, N., Al-Najjar, H.A.H., Gibril M. B. A., Lay, U.S., Motevalli, A.,"An evaluation of landslide susceptibility mapping using remote sensing data and machine learning algorithms in Iran. ISPRS Annals of the Photogrammetry", Remote Sensing and Spatial Information Sciences, 2019.
Kalantar, B., Ueda, N., Al-Najjar, H.A.H., Moayedi. H., Halin, A.A., Mansor, S.,"UAV and LiDAR image registration: A surf-based approach for ground control points selection", International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 2019.
Kalantar, B., Ueda, N., Lay, U.S., Al-Najjar, A.H.A., Halin, A.A., "Conditioning factors determination for landslide susceptibility mapping using support vector machine learning",IEEE International Geoscience and Remote Sensing Symposium, 2019.
Fujiwara,Y., Ida, Y., Kanai,S., Kumagai,A., Arai, J., and Ueda, N., "Fast random forest algorithm via incremental upper bound," Proc. of the 28th ACM International Conference on Information and Knowledge Management (CIKM2019) , 2019.
Okita, T., Hachiya,H.,Inoue, S.,and Ueda, N.,"Translation between waves, wave2wave," Proc. of the 22nd International Conference on Discovery Science (DS2019) ,2019.
Fujiwara, Y., Kanai, S., Arai, J., Ida, Y., and Ueda, N., "Efficient data point pruning for one-class SVM," Proc. of Association for the Advancement of Artificial Intelligence (AAAI2019), 2019.
Shimizu, H., Matsubayashi, T., Tanaka, Y., Iwata1, T., Ueda, N., and Sawada, H.,"Improving route traffic estimation by considering staying population," The 21st International Conference on Principles and Practice of Multi-Agent Systems (PRIMA), 2018.
Kalantar, B., Mansor, S., Halin, A. A., Ueda, N., Shafri, H. Z. M. and Zand, M., "A graph-based approach for moving objects detection from UAV videos," Proc. of SPIE Image and Signal Processing for Remote Sensing, Vol.10789, 2018.
Kalantar, B., Ueda, N., AL-Najjar, H. A. H., Idrees, M. O., Motevalli, A. and Pradhan, B., "Landslide susceptibility mapping at dodangeh watershed, Iran, using LR and ANN models in GIS," Proc. of SPIE Earth Resources and Environmental Remote Sensing, Vlo.10790, 2018.
Azeez, O. S., Kalantar, B., Al-Najjar, H. A. H., Halin, A. A., Ueda, N. and Mansor, S., "Object boundaries regularization using the dynamic polyline compression algorithm," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science (ISPRS2018), Vol.XLII-4, pp. 541-546, 2018.
Yonezawa, T., Takeuchi, K., Itoh, T., Sakamura, N., Kishino, Y., Naya, F, Ueda, N. and Nakazawa, J., "Accelerating urban science by crowdsensing with civil officers," Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp2018), 2018.
Kishino, Y., Shirai, Y., Takeuchi, K., Suyama, T., Naya, F. and Ueda, N., "Regional Garbage Amount Estimation and Analysis using Car-Mounted Motion Sensor," Proc. of ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp2018), 2018.
Fujiwara, Y., Arai, J., Kanai, S., Ida, Y. and Ueda, N., "Adaptive data pruning for support vector machines," Proc. of IEEE International Conference on Big Data, 2018. Choffin, B., and Ueda, N.,"Scaling Bayesian optimization up to higher dimensions: A review and comparison of recent algorithms," Proc. of IEEE International Workshop on Machine Learning for Signal Processing (MLSP2018), 2018.
Kimura, A., Gharamani, Z., Takeuchi, K., Iwata, T., and Ueda, N., "Few-shot learning of neural networks from scratch by pseudo example optimization, " Proc. of 29th British Machine Vison Confernece (BMVC), 2018.
Tanaka, Y., Iwata, T, Kurashima, T., Toda, H., and Ueda, N., "Estimating latent people flow without tracking individuals," International Conference on Artificial Intelligence (IJCAI), July 2018.
Kimura, A., Takahashi, I., Tanaka, M., Yasuda, N., Ueda, N., and Yoshida, N., "Single-epoch supernova classification with deep convolutional neural networks," Proc. US-Japan Workshop on Collaborative Global Research on Applying Information Technology, in conjunction with ICDCS2017.
Blondel, M., Niculae, V., Otsuka, T., and Ueda, N., "Multi-output polynomial networks and factorization machine, "Proc. Neural Information Processing Systems (NIPS2017), 2017.
Kishino, Y., Takeuchi, K., Shirai, Y., Naya, F., and Ueda, N., "Datafying city: detecting and accumulating sptio-temporal events by vehicle-mounted sensors, "Proc of International Workshop on Smart Cities (IWSC2017), 2017.
Takeuchi, K., Kashima, H., and Ueda, N., "Autoregressive tensor factorization for spatio-temporal predictions," Proc. of IEEE Ineternationl Conference on Data Mining (ICDM2017), 2017.
Fujiwara, Y., Marumo, N., Blondel, M., Takeuchi, K., Kim, H., Iwata, T. and Ueda, N., "Scaling Locally Linear Embedding," In Proc. SIGMOD 2017, pp. 1479-1492, 2017.
Kim, H., Iwata, T., Fujiwara, Y. and Ueda, N., "Read the Silence: Well-Timed Recommendation via Admixture Marked Point Processes," In Proc. AAAI 2017, pp. 132-139, 2017.
Ichimura1, T., Fujita1, K., Yamaguchi, T., Hori1, M., Lalith1, M. and Ueda, N., "AI with Super-computed Data for Monte Carlo Earthquake Hazard Classification," Proc. of the international conference for high performance computing, networking, storage and analysis (SC2017), 2017.
Kimura, A., Takahashi, I., Tanaka, M., Yasuda, N., Ueda, N. and Yoshida, N., "Single-epoch supernova classification with deep convolutional neural networks," The 1st US-Japan Workshop 2017, 2017.
Toda, T., Inoue, S. and Ueda, N., "Mobile activity recognition through training labelswith inaccurate activity segments," 13th Annucal International Conference on Mobile and Ubiquitous Systems 2016.(MobiQuious2016), 2016.
Blondel, M., Ishihata, M., Fujino, A. and Ueda, N., "Higher-order factorization machines," Advances in Neural Information Processing Systems (NIPS2016), 2016.
Fujino, A. and Ueda, N., "A semi-supervised AUC optimization method with generative models," IEEE International Conference on Data Mining (ICDM2016), 2016.
Takeuchi, K. and Ueda, N., "Graph regularized non-negative tensor completion for spatio-temporal data analysis," The Second International Workshop on Smart Cities, 2016.
M. Blondel, Fujino, A. and Ueda, N., "Polynomial Networks and Factorization Machines: New Insights and Efficient Training Algorithms," International Conference on Machine Learning (ICML2016), 2016.
Ishiguro, K., Sato, I., Ueda, N., Nakano, M. and Kimura, S., "Infinite plaid models for infinite bi-clustering," Proc. the 27th AAAI Conference on Artificial Intelligence (AAAI2016), 2016.
Ueda, N., Naya, F., Shimizu, H., Iwata, T., Okawa, M. and Sawada, H., "Real-time and proactive navigation via spatio-temporal prediction, "Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers(UbiComp 2015), pp. 1559-1566, 2015.
Inoue, S., Ueda., N., Nohara, Y. and Nakashima, N., "Mobile activity recognition for a whole day: recognizing real nursing activities with big dataset," Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing(UbiComp2015), pp. 1269-1280, 2015.
Baba, Y., Kashima, H., Nohara, Y., Kai, E., Ghosh, P., Islam, R., Ahmed, A., Kuroda, M., Inoue, S., Hiramatsu, T., Kimura, M., Shimizu, S., Kobayashi, K., Tsuda, K., Sugiyama, M., Blondel, M., Ueda, N., Kitsuregawa, M. and Nakashima, N., "Predictive Approaches for Low-Cost Preventive Medicine Program in Developing Countries," Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD2015), pp. 1681-1690, 2015.
Blondel, M., Fujino, A. and Ueda, N., "Convex Factorization Machines," Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases(ECML PKDD), Part II, LNAI 9285, pp. 19-35, 2015.
Matsubara, Y., Sakurai, Y., Ueda, N. and Yoshikawa M., "Fast and Exact Monitoring of Co-Evolving Data Streams," 2014 IEEE International Conference on Data Mining(ICDM), pp. 390-399, 2014. Blondel, M. Fujino, A. and Ueda, N., "Large-scale Multiclass Support Vector Machine Training via Euclidean Projection onto the Simplex," 22nd International Conference on Pattern Recognition (ICPR2014), pp. 1289-1294, 2014
Nakano, M., Ishiguro, K., Kimura, A., Yamada, T. and Ueda, N., "Rectangular tiling process," Proceedings of The 31st International Conference on Machine Learnin (ICML2014), pp. 361-369, 2014.
Blondel, M., Kubota, Y. and Ueda, N., "Online Passive-Aggressive Algorithms for Non-Negative Matrix Factorization and Completion," Proc. 17th International Conference on Artificial Intelligence and Statistics (AISTATS2014), Vol.33, pp. 96-104, 2014.