2019/10/19
NTT Basic Research Laboratories demonstrated a method to assemble polymeric and cell-friendly thin films into three-dimensional structures. Since the materials of these films are not harmful to living organisms, neurons could be encapsulated inside them for a long period of time, during which they grew axons or neurites along the 3D structure and expressed their intrinsic functions. This achievement promises new biological cell transplantation interfaces for regenerative medicine and monitoring of living tissue.
The motivation behind this advance is that since biological samples are fragile, it is technically difficult to precisely to form them into a desired shape at the desired position. A sub-millimeter-scale artificial structure composed of biocompatible, flexible, and durable materials would allow such samples to be formed or grown in various shapes without damaging them.
Researchers at NTT have been studying a carbon-based nanomaterial called graphene*1 for many years. They discovered that a graphene-laden polymeric thin film spontaneously assembles into a three-dimensional structure when it is released from the substrate supporting it. Poly-para xylylene (parylene*2) was used as the material of the polymeric thin film, because it tightly sticks to graphene. The assembled 3D structure was used as a cell scaffold on which hippocampal neurons were successfully cultured and grown into functional fiber-shaped neuronal tissue. The fiber-shaped neuronal tissues were found to exhibit cell-cell interactions*3 by forming a network in which they were connected to external neurons through minute holes in the self-folded tubular film.
Graphene and polymer thin films are non-toxic and have good affinity with living organisms. It is possible to assemble these films into various 3D structures by changing their shape and thickness. Moreover, owing to the excellent conductivity of graphene, the technology developed in this study can be applied to new biological interface devices such as the flexible electrodes for monitoring the periphery of transplanted cells in regenerative medicine, repairing damaged tissues, and assembling 3D artificial tissues for drug-discovery screening.
The Bio-Medical Informatics Research Center (BMC) at NTT was established in July 2019. The center’s mission is to apply the basic and applied research knowledge of materials science to the field of biofunctional materials and create ICT data-driven medicine and behavioral information analysis technology by cooperating with NTT Research Inc., the Medical & Health Informatics Laboratories, NTT operating companies, and hospitals owned by NTT Group.
>Molecular and Bio Science Research Group
Recent advances in medical technology and information processing technology have brought prospects for biological interface (bio-interface) that allow direct access to and monitoring of living biological tissue. Since the bio-interfaces should be durable, soft, and, compatible to the tissues, the search is on all over the world for new materials that can meet these requirements.
Graphene, which is essentially a single layer of carbon atoms, is one of the most promising two-dimensional (2D) functional materials. This extremely thin sheet-like material has high transparency, strength, chemical resistance, heat resistance, flexibility, and biocompatibility. Thanks to these characteristics, it is being examined as a potential alternative to using silicon and rare metals in transistors, batteries, and sensors. However, because graphene is an extremely thin 2D sheet, it has proven difficult to assemble and refine it into a three-dimensional (3D) structure with sufficient definition to be practically used in the above devices.
A method for processing and bending graphene freely and easily has not been established, and there are still technical problems that cause fracture and exfoliation. If graphene can be formed into 3D structures, it could be used as an interface that fits the surface of biological samples. As such, it could be used to make in vivo implantable electrodes and microscale cell-culture substrates. Therefore, graphene is potentially useful in regenerative medicine and for making medical/therapeutic devices.
We developed an easy method to assemble graphene into a fine three-dimensional structure, by transferring it from a glass substrate to a parylene polymer thin film. The transferred graphene adheres strongly to the parylene film and spontaneously deforms it into a 3D structure when it is released from the substrate due to the difference in the elastic moduli of the materials (this phenomenon is called self-folding). This method enables us to finely bend graphene with a curvature radius of 4 µm at a minimum by changing the thickness of the polymer thin film (Figure 1, Movie 1). In addition, all of the materials used in this technology are cell-friendly and highly flexible. We used self-folding 3D graphene formed into a cylinder as an interface with biological samples (cells). This self-folding graphene scaffold encapsulated the cells (neurons in this case), and the cells were stably cultured inside its hollow center it for a long time. In particular, we succeeded in artificially growing a minute and tissue-like nerve structure along the scaffold. We formed a network between it and other neurons outside the scaffold and demonstrated cell-cell interactions both inside and outside the structure.
We developed a technology to spontaneously form graphene into any desired shape and produce transparent biocompatible 3D structures. We experimentally encapsulated and stably cultured cells inside a self-folded 3D structure. Our method can be used to make scaffold structures for regenerative medicine and examine the behaviors of single cells; it can also be used to make new bio-interfaces, for example, in vivo implantable electrodes that utilize the high conductivity of graphene.
Authors: T. F. Teshima, C. S. Henderson, M. Takamura, Y. Ogawa, S. Wang, Y. Kashimura, S. Sasaki, T. Goto, H. Nakashima, and Y. Ueno
Title: Self-Folded Three-Dimensional Graphene with a Tunable Shape and Conductivity
Journal title: Nano
Letters
Publication date: 9th, January, 2019
Authors: K. Sakai, T. F. Teshima, H. Nakashima, and Y. Ueno
Title: Graphene-based neuron encapsulation with controlled axonal outgrowth
Journal title: Nanoscale
Publication date: 28th, July, 2019
Two types of materials were used to make the bi-layer thin film: monolayer graphene sheets and polymeric parylene with thicknesses ranging from 50 nm to 500 nm. In addition, a calcium alginate hydrogel layer was placed underneath the graphene/parylene bilayer4 as a sacrificial layer. We could control the film thickness of both the graphene and parylene and process them into any two-dimensional pattern by using lithography technology.
Calcium alginate gel can be dissolved instantly by adding chelating agents such as ethylenediaminetetraacetic acid (EDTA5) or sodium citrate solution. This non-cytotoxic dissolution of a sacrificial layer allows the release of the bilayer membrane from the substrate. In the experiment, the calcium alginate sacrificial layer gradually dissolved from the outer periphery of the thin film, which led to the thin films deforming into a 3D shape. In particular, rectangular films were deformed into a cylindrical structure such that the graphene was on the outside surface. This transformation of graphene-laden parylene films encapsulated the cells without damaging them.
(Video 1) Self-folding of graphene / parylene bilayer
(Video 2) Damage-free cell encapsulation in 3D graphene
(Video 3) Pore-mediated elongation of neurites
(Video 4) Synchronization of nerve cell activity