2018/04/17
Dr. Hiroki Mashiko, Dr. Katsuya Oguri, and Dr. Hideki Gotoh of Nippon Telegraph and Telephone Corporation (NTT) and Mr. Yuta Chisuga, Assoc. Prof. Ikufumi Katayama and Mr. Hiroyuki Masuda, and Prof. Jun Takeda of Yokohama National University observed petahertz (1015 of a hertz) electron oscillation using chromium-doped sapphire (Cr:Al2O3) solid-state material. The periodic electron oscillations of 667-383 attoseconds (as) (10-18 of a second) are the fastest ever been measured in direct time-dependent spectroscopy in solid-state material. The observation was performed with an extremely short isolated attosecond pulse with a robust pump-probe system. Furthermore, the individual electron dephasing times of the Cr donor-like intermediate level and the Al2O3 conduction band state were characterized. Since electron oscillation is the origin of the light-matter interaction, this study lays the essential groundwork for exploring various optical phenomena in solid-state materials, and the ultrafast time dependence will be important for study of electronic and photonic devices.
This achievement is reported in Nature Communications on April 18, 2018.
This work was supported by JSPS KAKENHI Grant No. 16H05987 and 16H02120.
>Quantum Optical Physics Research Group
The lightwave-field induces ultrafast electric dipole oscillation*1 in the material, and the lightwave-field-induced electron oscillation is the important physical phenomenon in the fundamental light-matter interaction. However, the lightwave field in visible and ultraviolet regions can reach petahertz frequencies (1015 of a hertz) (Fig. 1), which means the oscillation periodicity can achieve attosecond (10-18 of a second) duration. To observing this ultrafast oscillation at petahertz frequencies requires extremely high temporal resolution. For example, as a camera needs a high-speed shutter to take snap shots of stop-motion, an instantaneous strobe light is necessary to observe an electron with ultrafast motion.
In a previous study, we generated an isolated attosecond pulse (IAP)*2 [H. Mashiko et al., Nature commun. 5, 5599 (2014), (press release)] and monitored the electron oscillation with a 1.2 PHz frequency using gallium-nitride (GaN) semiconductor [H. Mashiko et al., Nature Phys. 5, 741 (2016), (press release)]. The next challenges were the observation of faster electron oscillation in the chromium-doped sapphire (Cr:Al2O3)*3 insulator and the characterization of the ultrafast electron dephasing.
We successfully observed the multiple near-infrared (NIR)-pulse-induced electronic dipole oscillations (periodicities of 667-383 as) in the Cr:Al2O3 solid-state material. The measurement was achieved by using the extreme short IAP (192-as duration) and a stable pump (NIR pulse) and probe (IAP) system (timing jitter of~23 as). The characterized electron oscillations are the fastest ever measured in direct time-dependent spectroscopy in solid-state material. In addition, the individual dephasing times in the Cr donor-like intermediate level and the Al2O3 CB state were revealed. Since electron oscillation is the origin of the light-matter interaction, results are important for monitoring various optical phenomena through the dielectric polarization*4. The time dependence will be useful for the study of electronic and photonic devices.
The electron oscillation through dielectric polarization is the fundamental phenomenon of the light-matter interaction. This ultrafast property revealed by the direct time-domain observation will provide an ultrafast technology for the manipulating electron oscillation. The benefit of the observation is directly related the capability to control absorption, reflection, refractive index, photocurrent, photoemission, and diffraction. The study of electron motion will be important for improving the functionality and the efficiency of photonic and electronic devices in the future.
H. Mashiko, Y. Chisuga, I. Katayama, K. Oguri, H. Masuda, J. Takeda, and H. Gotoh,
“Multi-petahertz electron interference in Cr:Al2O3 solid-state material”
Nature communications (2018).
*1 ... Dipole oscillation
A dipole is defined as the product of the magnitude of electric charges and the distance separating them. When an electron is excited by an incident light field, electrons and ions with opposite polarities create the dipole. Then, the dipole oscillation induces charge oscillation.
*2 ... Isolated attosecond pulse (IAP)
An attosecond is 1×10-18 of a second. An attosecond pulse is an optical light source with ultrashort duration, which behaves as an instantaneous strobe light. Generally, the IAP exists in the vacuum ultraviolet (VUV), extreme ultraviolet (XUV), and soft x-ray regions (approximately 3~90-nm wavelengths, 400~15 eV photon energies). The attosecond pulse is the shortest strobe light in existence.
*3 ... Chromium-doped sapphire (Cr:Al2O3)
Trigonal (rhombohedral) structured sapphire (α-Al2O3) is a typical electric insulator with a wide bandgap. It is commonly used in the manufacture of semiconductor epitaxial wafers, owing to its hardness, high thermal conductivity, and resistance to optical damage. In this experiment, the chromium (Cr) dopant produces a donor-like intermediate level for the Al2O3 host material.
*4 ... Dielectric polarization (or polarization)
Dielectric polarization occurs when a dipole moment is induced in an insulating material by an externally applied electric lightwave field. The dielectric polarization is a kind of electric, interfacial, ionic, or orientational polarization. In this experiment, the electric polarization with ultrafast dipole oscillation was used. In the electric polarization, positive and negative electric charges are shifted in within dielectric by the lightwave field.
*5 ... Transient absorption spectroscopy
In a typical experiment, both the light for excitation (pump) and the light for measuring the absorbance (probe) are produced by an ultrashort pulse. The impact of the probe pulse on the sample is recorded with photon energy (wavelength) and time to study the dynamics of the excited state. In this experiment, the NIR pulse and IAP corresponded to pump and probe pulses, respectively.