2024/09/06

日本電信電話株式会社(本社:東京都千代田区、代表取締役社長:島田 明、以下「NTT」)と国立大学法人東京工業大学(学長:益 一哉、以下「東工大」)理学院 物理学系の納富雅也教授らの共同研究チームは、相変化物質と半導体の特殊なハイブリッドナノ構造の実現により、物質の相転移によって世界で初めて光のトポロジカル相転移を引き起こすことに成功しました(図1)。
1996年にノーベル物理学賞が授与された固体のトポロジカル物性の原理が、近年ナノ構造中の光に適用され新しい光の自由度として活発な研究が進んでいますが、これまで光のトポロジカルな性質は構造に固定され、作製後には変更することができませんでした。本成果では、物質の相転移を利用して、構造作製後にオンデマンドに光のトポロジカル相を切り替えられることを実証しました。この成果は、物質の相転移と光の相転移を結び付けた新しい学術分野の創造につながるとともに、光のトポロジカルな性質を利用した再構成可能な新機能光集積回路の実現により、光を用いた高度な情報処理基盤の開拓につながるものです。
本研究成果は、2024年8月23日(米国東部夏時間)に米国科学誌「Science Advances」のオンライン版に掲載されました。
トポロジーとはもともと数学の概念で、例えば物体の穴の数のような、連続変形では値が変わらない離散量(トポロジカル不変量*1)によって決まる性質が議論されてきましたが、近年この概念が物理の世界に導入され、2016年のノーベル物理学賞は、 固体の電子状態の中にトポロジカルな性質が隠れていることを発見した三人の科学者に与えられました。彼らの研究により、固体中の電子がチャーン数*2(C)と呼ばれるトポロジカル不変量を持ち、これにより決まる様々な性質が発現することがわかり、その一つとしてトポロジカル絶縁体*3と呼ばれる特殊な状態が実現され、活発に研究されています。最近になり、同様なトポロジカルな性質が、人工的な誘電体構造であるフォトニック結晶*4の中に光の性質として現れることが判明し活発に研究されています。人工誘電体構造がノンゼロのチャーン数を持つ場合に光のトポロジカル絶縁体*5となり、この状態では内部に光が通りませんが、のチャーン数が異なる界面には光の導波路が形成されます。この導波路は、光の伝播方向が一方向に固定されたり、後方散乱損失が抑制されるといった特長が期待されており、将来の光集積回路への応用が期待されています。 一般に固体から液体、気体のように物質の性質が大きく変わる現象を相転移と呼びますが、もしも、光のトポロジカル絶縁状態とノーマル状態を切り替える相転移が実現すれば、この界面を自由に生成することができ、任意の位置にトポロジカルな性質を持った光の配線をオンデマンドで生成することが可能となります。しかし、これまでの技術では光のトポロジカルな性質は構造で決まっており、構造を作製した後には変更ができませんでした。代表例として、ハニカム格子型フォトニック結晶を用いて光トポロジカル絶縁体を形成する方法を示します(図2)。この場合、中央のハニカム格子に対して、6個の穴が内側にずれた構造ではノーマルな光絶縁体になり、外側にずれた構造ではチャーン数が1の光トポロジカル絶縁体となることが知られていますが、構造が決まってしまうとチャーン数は不変です。ここでバンドの上下が入れ替わっていますが、チャーン数を変化させトポロジカル相転移を実現するためには、バンド反転*6が必要であることがわかっています。これまで様々な手法を使って、トポロジカルな性質を制御しようとする研究は多く行われてきましたが、バンド反転が難しいため、チャーン数を変化させてトポロジカル状態をスイッチする、即ち光トポロジカル相転移を実現した例はありませんでした。
作製したハイブリッドフォトニック結晶構造のフォトニックバンド構造を、角度分解反射分光法*8と呼ばれる手法で測定した結果を図5に示します。左の結果はGSTが結晶相にある場合、右はGSTがアモルファス相にある場合の同一試料に対する測定結果です。二つの逆向きの放物線形状がそれぞれフォトニックバンドに相当しています。左の結果では放物線の底の位置で下のバンドが明るく見えていますが、右の結果では逆に上のバンドの頂点が明るく見えています。この明るさのコントラストが反転する現象が、バンドが反転し光のトポロジカル相転移が起きた証拠となっています。さらに詳細な分析から、左のバンドはチャーン数の大きさがゼロのノーマル相、右は1であるトポロジカル相であることが確認されました。この実験結果は、GSTの相転移によって、フォトニック結晶のバンドが反転し、光のトポロジカル相転移が実現したことを示しています。
物質の相転移による光トポロジカル相転移を観測した例はこれまでになく、世界で初めての成果です。元々物質の相転移と光の相転移はこれまで全く別のものと考えられてきましたが、この成果では二つの世界の相転移現象を連携させることに成功したことになり、学術的に新しい分野の創出につながるものと考えられます。また、この結果は、構造作製後にGSTを相転移させればいつでもフォトニック結晶を光トポロジカル絶縁状態またはノーマル状態にできることを示しています。GSTは光パルス照射により双方向に相転移させることができるので、この技術を用いれば任意の場所のフォトニック結晶を光トポロジカル絶縁体に変えたり、また逆に戻したりすることが可能となりますが、これは任意の場所にチャーン数が異なる界面によるトポロジカル光導波路を形成することが可能になることを意味し、図6に示すような再構成可能な光トポロジカル回路の将来的な実現に向けた大きな一歩と言えます。
この研究において、ハイブリッド構造の作製は主にNTTが行い、理論解析および測定はNTTと東工大の両者で行いました。NTT研究所は高度な半導体微細加工技術を有しており、これまでも世界有数の高品質フォトニック結晶を作製してきましたが、今回はこの高度な技術をハイブリッド構造に適用して独自のナノ構造作製に成功しました。
GSTは光パルスによって相転移が可能であることから、今後光パルスによる光トポロジカル相転移の実現をめざします。また、この光トポロジカル相転移現象を用いて、チャーン数が変化する境界を作り、オンデマンドで再構成可能な光導波路を実現する予定です。またさらに、これらの技術を用いて図5に示した再構成可能な光回路への応用を狙い、最終的にはこのトポロジカルな性質による光の新たな自由度を活用して光による大容量の情報処理に適用し、情報処理基盤の高度化に寄与することをめざしています。光のトポロジカルな性質の研究は世界的にも基礎的な研究段階で未知な部分が少なくないですが、現在も様々な新しい性質が発見されており、今回の成果は、そういった多様な光のトポロジカルな性質を光トポロジカル相転移によって操作できる可能性を示しており、学術的にも応用的にも大きな広がりが期待されます。
また、今回用いたハイブリッドフォトニック結晶作製技術は、GST以外の物質にも適用可能であることから、様々な機能材料を用いたハイブリッドフォトニック結晶を実現することで、様々な光学応答の制御にも応用できる可能性があります。
掲載誌: Science Advances
論文タイトル: "Photonic topological phase transition induced by material phase transition"
著者: Takahiro Uemura, Yuto Moritake, Taiki Yoda, Hisashi Chiba, Yusuke Tanaka, Masaaki Ono, Eiichi Kuramochi, and Masaya Notomi