2024/01/19

日本電信電話株式会社(以下「NTT」)と学校法人日本大学(以下「日本大学」)は、通信波長の光に共鳴する希土類元素を添加した超音波素子を作製することにより、数ミリ秒の長い寿命を持つ光励起電子とギガヘルツ超音波のハイブリッド状態を生成することに成功しました。本成果により、低電圧な超音波励起を用いたコヒーレンスの高い希土類電子の制御が可能となるため、将来的な省エネ量子光メモリ素子への応用が期待されます。
本研究成果は、米国東部時間2024年1月18日、米国科学誌Physical Review Lettersにオンラインで掲載されました。
希土類元素の一つであるエルビウム(Er)は、通信波長の光に共鳴する内殻電子*1を有します。外殻電子によって遮蔽された内殻電子は外界の影響を受けにくいため、Erは高い量子コヒーレンスが得られる元素として量子光メモリに利用されています。しかしながら、外殻電子の遮蔽効果は内殻電子の外部制御を難しくするという負の側面も与えます。実際に、電場を用いて結晶中Erの光共鳴周波数を1 GHz変調する為には100 V以上の高電圧が必要であり、制御性の低さが課題となっていました。これに対してNTTは、低電圧で大きな変調が得られる機械振動子を用いた省エネ量子光メモリ素子の実現へ向けた研究を進めています。これを実現するためには、電子の光応答を機械振動で制御する必要がありますが、それを可能とするための電子と振動のハイブリッド状態*2を如何にして創出するかがこれまでの課題でした。
今回NTTと日本大学は、Erを添加した結晶基板上に超音波の一種である表面弾性波*3を生成する素子を作製することにより、約2GHzの振動歪を結晶表面に集中させ、Erの光共鳴周波数を高速変調することに成功しました。この変調速度は励起電子の寿命よりも速く、電子が共鳴線幅を上回る周波数で変調されるため、通信波長帯に共鳴する電子とギガヘルツ超音波のハイブリッド状態が生み出されます。この状態を用いることにより、コヒーレンスの高いEr励起電子の光応答を超音波で低電圧制御することができるため、将来的な省エネ量子光メモリ素子への応用が期待されます。
実験の概要
実験に用いた超音波素子(図1)は、Er添加結晶*4の上に圧電薄膜*5を成膜し、その上に櫛型電極を配置した構成をとります。櫛型電極に電圧をかけると電極パタンに合わせて圧電薄膜が変形するため、櫛型電極の周期に応じた周波数の超音波(表面弾性波)を生成することができます。これにより結晶表面付近に歪が誘起され、歪を受けたErの共鳴周波数が超音波の周波数で変調されます。その結果、光吸収スペクトルには、本来のErの吸収ピークに加え、等間隔に離れた複数の吸収ピークが現れます(図2)。
これらの吸収ピークの間隔は超音波の周波数に一致しており、Erの電子状態と超音波が混ざったハイブリッド状態による吸収を示しています。この実験結果と超音波の深さ方向の歪強度分布を取り入れた解析により、結晶の最表面付近ではハイブリッドの程度が十分大きくなり、超音波を用いて励起電子の数や位相を操作できる可能性が示されました(図3)。
今回の実験では振動歪が結晶表面付近に集中する表面弾性波を用いていますが、歪の大きさが表面からの深さ位置に依存するため、ハイブリッドの程度が位置によって異なります。今後、NTTと日本大学は、最表面のみにErを添加した材料の利用や、最表面のErだけ選択的に光アクセスできるような構造を導入することにより、ハイブリッド状態の均一性向上に取り組みます。ハイブリッド状態の均一性と制御性を高めることにより、通信波長帯で動作する省エネ量子光メモリ素子の実現と長距離量子通信への応用をめざします。
掲載誌: Physical Review Letters
論文タイトル: "Observation of Acoustically Induced Dressed States of Rare-Earth Ions"
著者: Ryuichi Ohta, Grégoire Lelu, Xuejun Xu, Tomohiro Inaba, Kenichi Hitachi, Yoshitaka Taniyasu, Haruki Sanada, Atsushi Ishizawa, Takehiko Tawara, Katsuya Oguri, Hiroshi Yamaguchi, and Hajime Okamoto