Enhancing CO2 absorption and growth of marine algae, we address environmental and food issues

# Biological conversion technology to reduce CO<sub>2</sub> dissolved in the ocean

IOWN Future

Sustainable Technology to Nurture the Earth



### Background

The amount of CO2 absorbed by the ocean is about seven times larger than that of CO<sub>2</sub> emitted by human activities. Since algae primarily absorbs CO<sub>2</sub> in the ocean, enhancing their CO<sub>2</sub> absorption could lead to reducing CO<sub>2</sub> in the ocean. However, such technology has not been established.

# Summary

- 1: By applying genome editing to algae, we identified the genes with the potential to
- significantly increase CO<sub>2</sub> absorption. 2: To clarify culture conditions required for maximizing CO<sub>2</sub> absorption by algae, we started mass cultivation experiments in outdoor environments.



#### **Features**

- Enhancing CO₂ absorption by algae through genome-editing technology
- Stable supply of algae through optimizing culture conditions

### Future benefits

Expanding the amount of CO<sub>2</sub> fixed into marine organisms will contribute to carbon neutrality and primary industries, such as seafood production.

# Collaboration partners

Regional Fish Institute, Ltd.

### Exhibiting Company

NIPPON TELEGRAPH AND TELEPHONE CORPORATION

Contact

rdforum-exhibition@ml.ntt.com