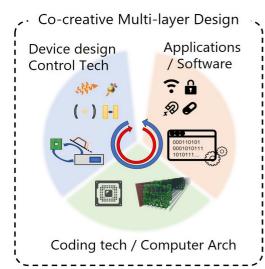

F01

We build superior designs with understanding of how hardware and software work together

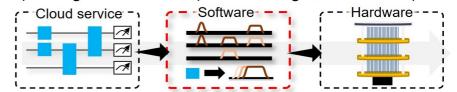
"Co-creative multi-layer design" for large-scale quantum computing

IOWN Future

Information-Processing Technology to Enrich Society

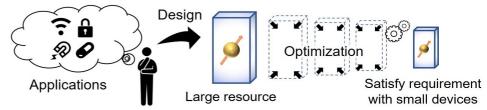


Background


Expectations are growing for quantum computers as next-generation high-speed computers. However, there are still many challenges to be overcome to realize a large-scale quantum computer that can perform highly accurate and efficient processing for practical problems.

Summary

We will introduce high-precision control software for running superconducting quantum computers and efficient hybrid quantum error reduction methods that accelerate the realization of large-scale quantum computation, obtained through our unique "co-creative multi-layer design".



1. Operating Software for Superconducting Quantum Computer

Translate abstract instructions to basic physical operations

2. Resource Estimation and Design Optimizations

| Features

- "Co-creative multi-layer design" to improve efficiency and precision of quantum computers based on mutual understanding of hardware and software mechanisms
- Developed control software for high-precision control of qubits, contributing to the first domestically produced quantum computer cloud service
- A hybrid error reduction method as an Early-FTQC technique that connects noisy intermediate-scale quantum computers with large-scale fault-tolerant quantum computer (FTQC)

Future_benefits

We provide guidelines for the optimal design of quantum computers and enables early realization of large-scale quantum computing that can solve practical problems.

Collaboration partners

RIKEN, The University of Tokyo, Osaka University, Kyushu University, Fujitsu Limited, The National Institute of Advanced Industrial Science and Technology

Exhibiting Company

NIPPON TELEGRAPH AND TELEPHONE CORPORATION

Contact

rdforum-exhibition@ml.ntt.com