

Overview of NTT's LLM tsuzumi

November 1st 2023

Shingo Kinoshita Senior Vice President, Head of Research and Development Planning

Overview of NTT's LLM

1 Features of tsuzumi

2 tsuzumi and IOWN

3 Product Lineup

tsuzumi

Feature 1. Lightweight

The challenge of increasing the scale of LLMs

Sustainability

Training in the scale of GPT-3 (175B) requires a massive amount of energy.

Ca. 1300 MWh_[1] per training session

ca. 1000 MWh from one nuclear power plant

[1] https://gizmodo.com/chatgpt-ai-openai-carbon-emissions-stanford-report-1850288635

Strategy for tsuzumi

Pursued direction

A massive LLM that knows everything

Small LLMs with specialized knowledge

Approach

Increase parameter size

Improve the quality and quantity of language training data

tsuzumi

Two types of lightweight tsuzumi LLMs have been developed:

Ultralight version

Light version

tsuzumi-0.6B

tsuzumi-7B


ca. 1/300 of GPT-3 (175B)

1/25 of GPT-3 (175B)

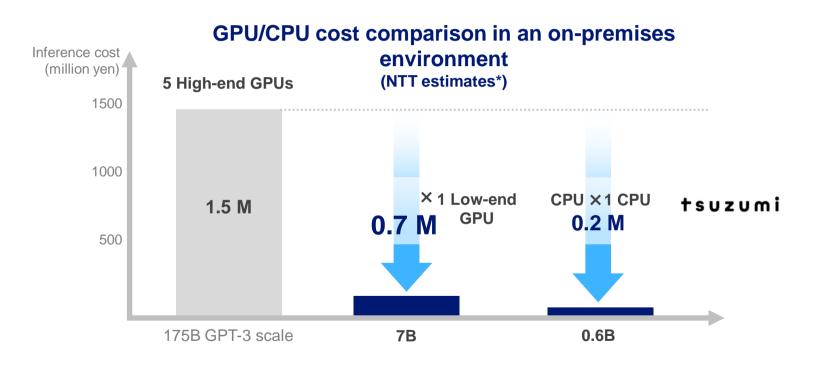
Benefits of reduced weight (1) Training cost

Compared with a GPT-3-scale LLM, training cost can be reduced by about 250 to 300 times.

^{*}Calculation conditions

[•] The required GPU-hours for each LLM was calculated from the ratio of parameters and the ratio of tokens based on 82,432 GPU-hours for training with Llama-1 7B.

[•] The training cost was calculated from the calculated GPU-hours and AWS GPU cloud fee.


[•] AWS GPU cloud fee: A100-80GB 1 node (8 GPUs) assumed to cost approximately 0.14 million yen/day

[•] Normally, when the parameter size is small, about 2 to 3 times the training data is required to improve the accuracy. The cost also becomes proportionately higher to this.

Benefits of reduced weight (2) Inference cost

Compared with a GPT-3 class LLM, inference cost can be reduced by about 20 to 70 times.

^{*}Calculation conditions

Quantization: 16 bits

[•] Required GPU memory size: Number of parameters x quantization size/ 8 bit (350 GB for 175B, 14 GB for 7B, 2.4 GB for 0.6B)

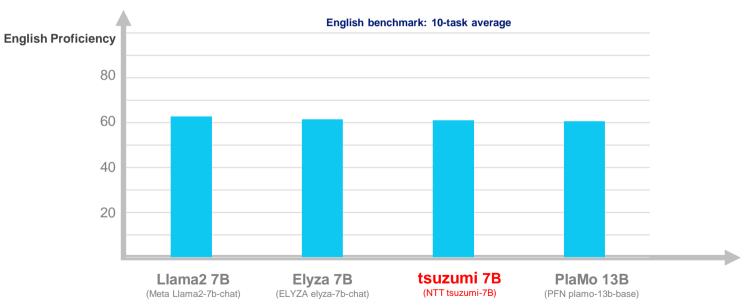
Hardware cost was converted based on: high-end GPU A100 80 GB: 3 M yen/unit, low-end GPU A10 24 GB: 0.7 M yen/unit, and CPU PC:
 0.2 M yen/unit; excluding other operating costs.

tsuzumi

Feature 2. Proficiency in Japanese

Japanese Proficiency Comparison: Rakuda Benchmark

tsuzumi-7B achieved world-class performance
Surpassed the large-scale GPT-3.5 and significantly outperformed domestic LLMs of the same class



^{*}Rakuda benchmark: https://yuzuai.jp/benchmark (Oct. 22, 2023)
Forty questions on Japanese geography, politics, history, and society; Scoring based on two-model comparison by GPT-4 (40 questions x 2 orderings);
Except for Ilm-jp, model output uploaded on the site were used in the evaluation; Ilm-jp was based on Huggingface model card description settings;
Input repetition and termination tokens were excluded by post-processing

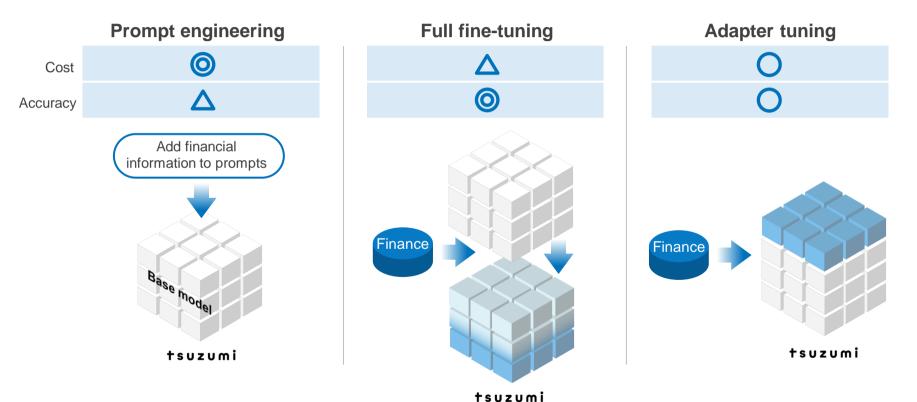
English Proficiency Comparison: Im-evaluation-harness

Achieved the same level of performance as the world's top class LLM, Llama 7B, in same-size comparison mainly in English

^{*}Results for base model for PLaMo only

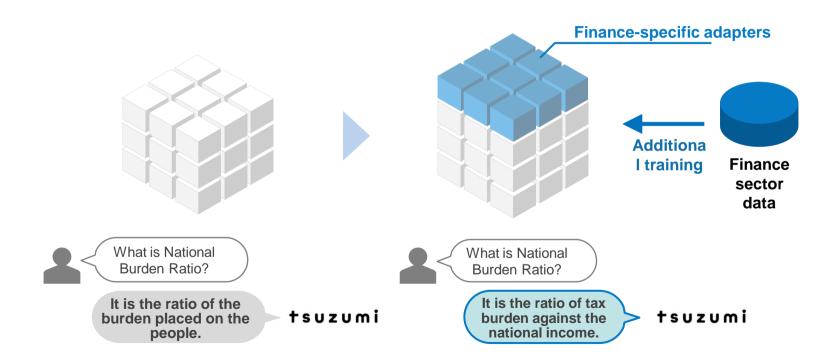
Im-evaluation-harness: https://github.com/EleutherAl/Im-evaluation-harness
Average score for 10 English tasks (common sense reasoning field) on the model card of rinna/bilingual-GPT-neox-4b
Metrics were acc and acc_norm (if both exist,acc_norm was preferred)
chat/instruct model was used for Llama2-7b, elyza-7b, and tsuzumi-7b. Result for plamo-13b is that of the base model.

^{*1:} Evaluation method

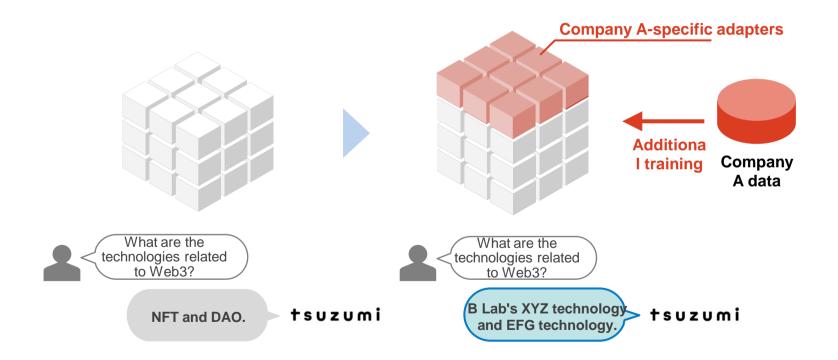

tsuzumi

Feature 3. Flexible customization

Different Tuning Methods

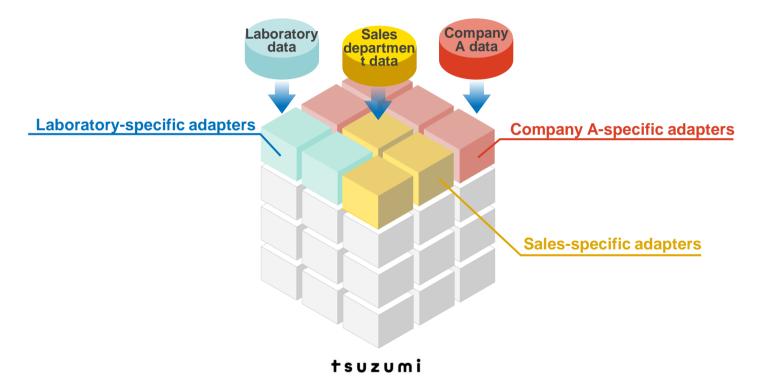

Three tuning methods are provided to flexibly respond to different requirements such as accuracy and cost.

Benefits of Adapter Tuning (1) Industry Specialization



Enables industry-specific customization at low cost

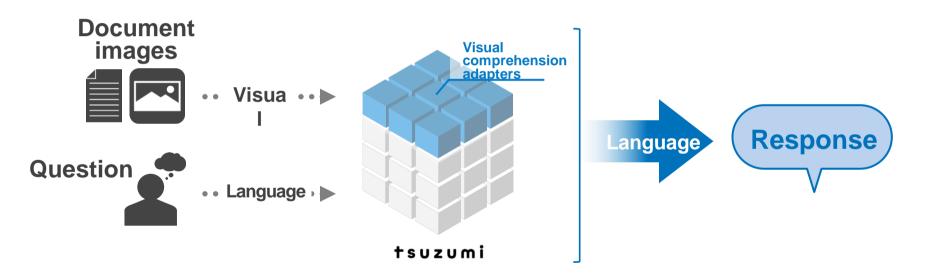
Benefits of Adapter Tuning (2) Organizational Specialization NTT


Enables organization-specific customization at low cost

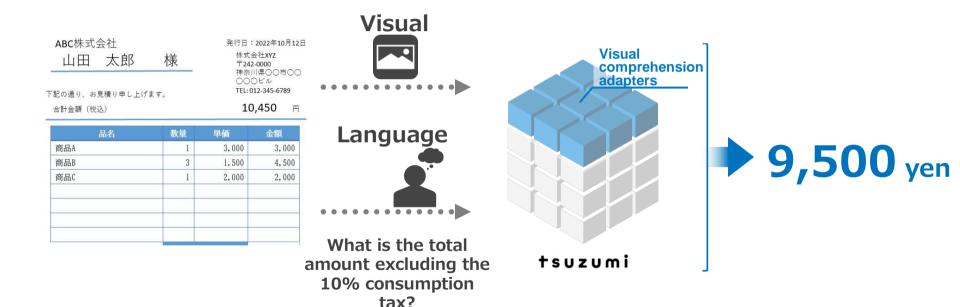
Multiple Adapters

Enables sharing the base model with multiple adapters, and switching and combining adapters in accordance with the user or scenario.

tsuzumi


Feature 4. Multimodality

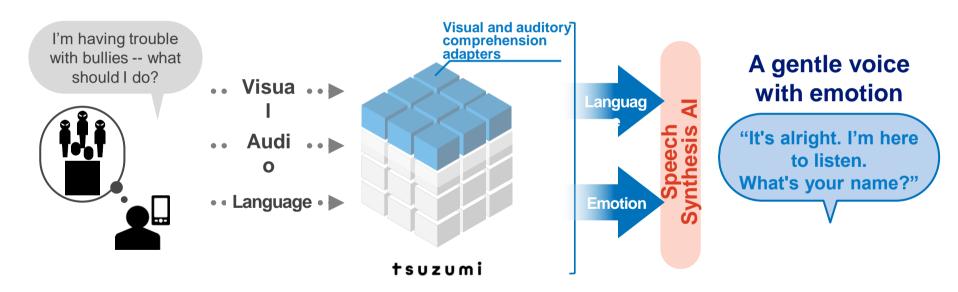
Modality extension (1) Language + Visual


Enables asking questions not only based on language, but also while presenting document images

Applicable to tasks that involve the use of documents with images such as invoices and specifications and for RPA operations

Modality extension (1) Language + Visual: Implementation Example

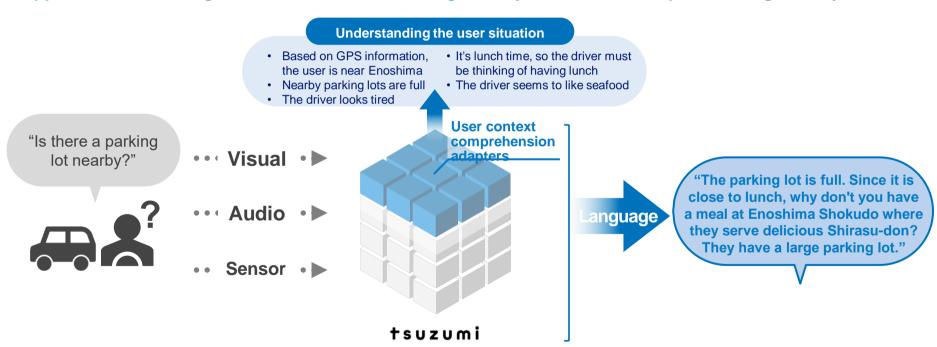
Modality extension (1) Language + Visual: Implementation Example



Modality extension (2) Language + Visual + Audio (0) NTT

In addition to language-based questions, enables answering questions based on the condition of the questioner

Applicable to tasks that involve closely working with people, such as counseling, call centers, and consultation centers


21

Modality extension (3) Language + User Situation (9) NTT

In addition to language-based questions, enables answering questions based on the situation of the questioner

Applicable to concierge services such as car navigation systems and smartphone navigation systems

22

tsuzumi

NTT Laboratories Technological Capability

Number of Al publications: 12th in the world and 1st in Japan

Rank	Company
1	Google (USA)
2	Microsoft (USA)
3	Facebook (USA)
4	Amazon (USA)
5	IBM (USA)
6	Huawei (China)
7	Alibaba (China)
8	NVIDIA (USA)
9	Tencent (China)
10	Samsung (South Korea)
11	Baidu (China)
12	NTT (Japan)
13	Apple (USA)
14	OpenAI (USA)
15	Intel (USA)
16	Adobe (USA)
17	Salesforce (USA)
18	Yandex (Russia)
19	NEC (Japan)
20	VinAl (Vietnam)

Top 100 Global Companies Leading in Al Research in 2022*1

^{*1:} https://thundermark.medium.com/ai-research-rankings-2022-sputnik-moment-for-china-64b693386a4

Natural Language Processing Research: 1st in Japan

Number of papers accepted in top language processing conferences (TACL. NAACL. ACL. EMNLP. COLING) 2015-2021*1

Rank	Company	No. of papers
1	NTT	25.89
2	Yahoo!	15.35
3	IBM	5.50
4	Fuji Xerox	4.41
5	Google	3.45
6	Fujitsu	2.98
7	PFN	2.51
8	NHK	2.38
9	NEC	1.63
10	Studio Ousia	1.20

^{*1} Reference: https://murawaki.org/misc/japan-nlp-2021.html

Track record in the Japanese Association for Natural Language Processing

Machine Translation International Competition: 1st in the World

Sponsored by top international conference, WMT

The most prestigious international competition in the field of machine translation.

1st*1

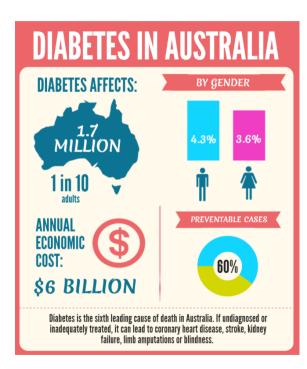
in 4 categories for news translation tasks

*1 https://aclanthology.org/2020.wmt-1.12/

Tohoku University HP https://www.tohoku.ac.jp/japanese/2021/07/news20210730-02.html

Joint team from Tohoku University, RIKEN, AIP, and NTT

Visual Comprehension International Competition: (O) NTT 2nd Place



Sponsored by top international conference, ICDAR

Visual Comprehension Competition Infographics VQA

2位*1 in the world

*1 https://icdar2021.org/program-2/competitions/

What is the percentage of women among diabetes patients?

3.6%

What is percentage of cases where diabetes was prevented?

40%

27

High-Quality, Large-Scale Training Data

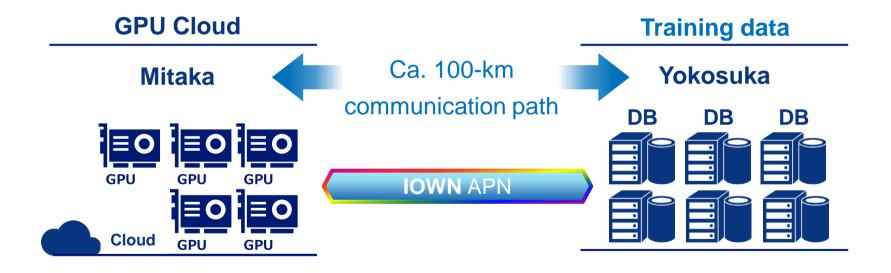
Pre-training

- More than 1 trillion tokens
- Japanese-English + 21 languages + programming languages
- Covers a wide range of domains from specialized fields to entertainment

Instruction Tuning

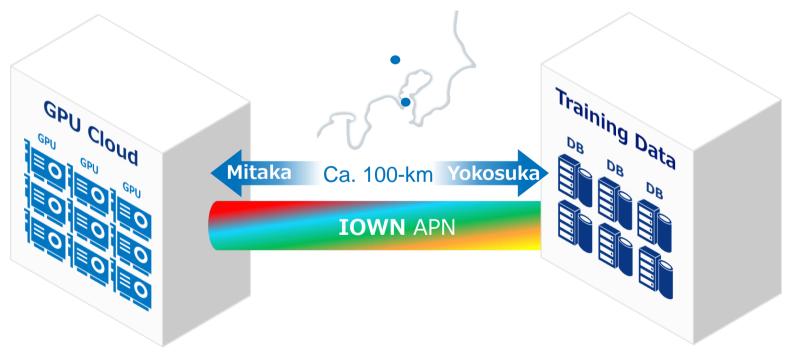
- Leverages in-house data on translation, summarization, dialog, and comprehension accumulated over many years of research
- Newly created wide-ranging tuning data on "benefit" and "safety"

Overview of NTT's LLM

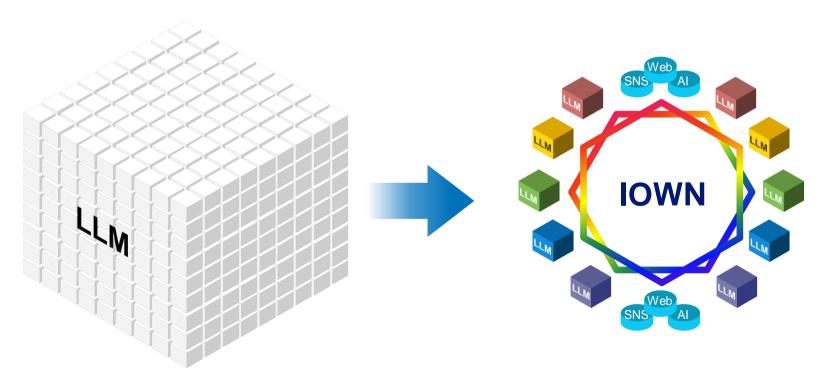

- 1 Features of tsuzumi
- 2 tsuzumi and IOWN

3 Product Lineup

IOWN APN x LLM


Construction of LLM sovereign hybrid environment using APN
Using GPUs in data centers hundreds of kilometers away while keeping training data at hand.
Creation of a safe, low-latency LLM training environment that is comparable with the local environment.

IOWN APN x LLM


Construction of LLM sovereign hybrid environment using APN Using GPUs in data centers hundreds of kilometers away while keeping training data at hand. Creation of a safe, low-latency LLM training environment that is comparable with the local environment.

NTT's Vision for the Future of Al: A Constellation of Al

Solving social issues through the collective wisdom of small LLMs with specific expertise and individuality, rather than creating a massive LLM that knows everything

Overview of NTT's LLM

1 Features of tsuzumi

2 tsuzumi and IOWN

3 Product Lineup

tsuzumi Product Lineup

Product	Param Size	Works on	Tentative Release Date	Tasks/ Language	Language Accuracy	Tuning	Multimodality
Ultra- lightweight tsuzumi	0.6B	CPU	Mar. 2024	Pre-General Tasks/ Japanese Only	Japanese Top-Level	Full Parameter No Adapters	Visual, Audio
Lightweight tsuzumi	7B	Low Grade GPU	Mar. 2024 For Trial: Oct. 2023	General Tasks/ Japanese, English Other 21 Languages.*1, Programming Languages	Japanese Top-Level	Full Parameter Single Adapter	Visual, Audio For Trial: Visual only
More Larger Models	13B~	High Grade GPU	After Apr. 2024	General Tasks/ Japanese, English Other 21 Languages.*1, Programming Languages	Multi-Lingual Top-Level	Full Parameter Multiple Adapters	Visual, Audio, Emotion, User Situation, Physical Sensations, etc.

^{*1:} Used only for pre-training data. The accuracy is to be evaluated and improved.

R&D Forum

R&D Forum

November 14 -17,2023 For Press: November 13

100 Exhibits IOWN, tsuzumi, etc.

Related to tsuzumi

- 12 Real Venue Exhibits
- Keynote Speeches by
 - Kinoshita (Senior VP)
 - Our Researchers
 - Our Partners

Representative themes Representative themes APN (All-Photonics Network) Next-generation Computing Infrastructure Next-generation Wireless Communication Technology

