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Abstract—The use of adaptive-bitrate streaming services over
networks has been increasing in recent years. The quality of
adaptive-bitrate streaming services is primarily affected by the
video resolution, the audio and video bitrate, bitrate adaptation,
stalling due to a lack of playout buffer, and the content length.
Therefore, service providers should monitor quality in real time
to confirm the normality of their services. To accurately monitor
quality, a model that can be used for quality estimation should
be developed. To develop such a model, we first conducted
extensive subjective quality assessment tests. We then developed
a model using the subjective data obtained in the tests. Finally,
we verified the performance of the proposed model by applying it
to unknown data sets (different from the training data sets used
to develop the model) and confirmed its high quality-estimation
accuracy.

Index Terms—Quality, adaptive-bitrate streaming, monitoring,
compression, stalling.

I. INTRODUCTION

S IGNIFICANT progress has recently been made in the de-
velopment of technologies such as encoders and decoders

(codecs) [1], [2], streaming protocols [3], [4], and networks.
Consequently, streaming service providers can deliver high-
resolution (e.g., high definition (HD), ultra HD-1 (UHD-1)
and UHD-2) audiovisual content over Internet Protocol (IP)
networks.

Streaming services can be classified as real-time transport
protocol (RTP)-based streaming (e.g., Linear TV) or hyper-
text transfer protocol (HTTP)-based streaming (e.g., adaptive-
bitrate streaming [HTTP Live Streaming (HLS)] [3] and
moving picture experts group dynamic adaptive streaming over
HTTP (MPEG-DASH) [4]).

RTP-based streaming provides customers with linear TV
over networks (e.g., x-digital subscriber line (xDSL), fiber to
the home (FTTH), fiber to the curb (FTTC), cable, and other
techniques) using RTP packets. Quality degradation primarily
occurs because of compression and IP packet loss. Regarding
compression, the quality is affected by the audio bitrate, video
resolution, framerate, and bitrate. IP packet loss leads to, for
example, freezing of the audio and video frame or audio and
video frame loss.

HTTP-based streaming provides customers with the best
possible quality for a certain network condition using Trans-
mission Control Protocol (TCP) packets because the client
can adaptively select a media file with the suitable bitrate.
Quality degradation occurs as a result of compression, network
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conditions (e.g., packet loss, insufficient bandwidth, delay, and
jitter), and lack of a playout buffer [5]–[9]. Like RTP-based
streaming, because of compression, the quality is also affected
by the audio bitrate, video resolution, framerate, and bitrate.
Network issues decrease the throughput and introduce delay at
the application layer. Consequently, the playout buffer slowly
fills or depletes. When the buffer is empty, the playback of
the audiovisual content is interrupted until sufficient data for
playback is received. This leads to initial loading and a stalling
event. When throughput reduction occurs, the quality level that
is most suitable under the current network conditions can be
selected (i.e., adaptation) because there are several files, i.e.,
chunks/segments, corresponding to representations of different
bitrates on the server.

The quality factors of both types of streaming services can
be summarized as follows. The first is how the source audio-
visual content is encoded before transmission. The second is
how the IP packets are transmitted over networks. The third is
how the encoded audiovisual stream is decoded and displayed
at the client terminal, e.g., a set-top box, personal computer
(PC), smartphone, or tablet.

Regarding the final perceived quality, the content length (in
this paper, the duration of viewing without stalling) also affects
the quality because of temporal effects, especially for longer
content.

Therefore, to monitor the normality of streaming services,
i.e., end-point quality, it is necessary to develop an objective
quality-estimation model that can be used for quality estima-
tion at the client.

Objective quality-estimation models can be categorized into
two types: media-layer models [10]–[19], which take media
signals as input to estimate quality, and parametric models
[20]–[42], which take application-layer information, e.g., the
bitrate, framerate, resolution, frame type (I-frame, B-frame,
and P-frame), quantization parameter (QP), motion vector, and
stalling information, as inputs to estimate the quality.

For quality monitoring at the client, a parametric model is
suitable because the client is not allowed to access media sig-
nals due to the encrypted media-related bitstream and because
a low computational cost is required to avoid consuming too
much of the client resources.

Although there are parametric models that take bitstream
information, e.g., frame type (I-, B-, and P-frames), QP, and
motion vector, as input [20]–[26], high computational power
is necessary to parse bitstream information. Therefore, a para-
metric quality-estimation model that does not use bitstream
information as input should be developed [28]–[36].
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Fig. 1. Block diagram of PNATS model proposed by ITU-T SG12

The International Telecommunication Union Telecommuni-
cation Standardization Sector Study Group 12 (ITU-T SG12)
studied and standardized the parametric non-intrusive assess-
ment of audiovisual media streaming quality for RTP-based
streaming services (so-called PNAMS) – lower resolution [LR:
i.e., quarter common intermediate format (QCIF, 176 × 144
pixels), quarter video graphics array (QVGA, 320 × 240
pixels), or half VGA (HVGA, 320 × 480 pixels)], higher
resolution [HR: i.e., standard definition (SD, 720 × 480 pixels
and 720 × 576), and high definition (HD, 1280 × 720 or 1920
× 1080 pixels)] applications [28]–[32] because the quality
estimation accuracy for these models was sufficiently high.
There are still some issues regarding developing a model for
higher-resolution video, i.e., 4K UHD and 8K UHD video.

ITU-T SG12 has also been developing a model for paramet-
ric non-intrusive assessment of TCP-based multimedia stream-
ing quality (so-called PNATS). A block diagram proposed by
ITU-T SG12 of the PNATS model is shown in Fig. 1. The
model consists of a parameter extraction module, audio quality
estimation module (Pa), video quality estimation module (Pv),
and quality integration module (Pq). The input is defined as
I.01: stream, I.11: audio-related parameters, e.g., audio bitrate,
I.13: video-related parameters, e.g., video bitrate, I.14: stalling
events, i.e., a tuple of start time and duration, both measured
in seconds, I.GEN: the resolution of the image displayed
to the user and device type on which the media is played
(either PC or mobile device). The output is defined as: O.21:
audio coding quality per output sampling interval, O.22: video
coding quality per output sampling interval, O.23: perceptual
buffering indication, O.34: audiovisual segment coding quality
per output sampling interval, O.35: final audiovisual coding
quality score, which includes aspects of temporal integration,
O.46: final media session quality score. O.21, O.22, and O.34
are output per-one-second scores on a 1-5 quality scale. O.23,
O.35, and O.46 are output single scores on a 1-5 quality
scale for the session. However, the model has not yet been
developed. ITU-T has plans to finalize the development of the
model and standardize it in 2017. We address this issue in this

paper.

For end-point quality monitoring purposes, a parametric
quality-estimation model should estimate quality that is af-
fected by bitrate adaptation (e.g., the audio and video bitrate,
video resolution, and framerate per segment of adaptive-bitrate
streaming), playout buffering (e.g., initial loading and stalling
due to the lack of a playout buffer), and content length
[5]. Although video framerate reduction due to video bitrate
reduction is often used for smaller screens (e.g., smartphones),
video framerate reduction due to video bitrate reduction is
not generally performed for larger screens (e.g., TVs, personal
computers, and tablets). Service providers often add advertise-
ments to generate revenue and profits. These advertisements
are provided randomly or personalized. They affect the impact
of initial loading on quality because advertisements are imme-
diately played after the initial loading. Therefore, the impact
of video framerate reduction and initial loading on quality is
out of the current paper’s scope.

We developed a parametric quality-estimation model that
can be used to estimate end-point quality for adaptive-bitrate
streaming services. We applied the block diagram proposed
by ITU-T SG12 to our model. Our model takes the audio and
video bitrate, video resolution, stalling-related information,
and content length parsed from received packets without media
bitstreams at the client application as input because parsing
bitstream information requires computational power, and this
information is usually encrypted, as described above.

We first describe conventional models and issues that need
to be addressed in Section II. We then present our proposed
parametric quality-estimation model in Section III. We explain
subjective quality assessment tests in Section IV. We verify
in Section V that the proposed model has sufficient quality-
estimation accuracy using training and validation data sets. We
discuss some relevant considerations in Section VI. Finally, we
conclude with a summary and mention potential future work
in Section VII.
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II. RELATED WORK

As described in Section I, it is desirable to develop a
parametric quality-estimation model that can be used to es-
timate quality that is affected by the audio and video bitrate,
video resolution, bitrate adaptation, stalling events, and content
length. In this section, we describe the conventional models
and the issues that must be addressed.

A. Impact of Compression, Audiovisual Interaction, and Adap-
tation on Quality

Conventional parametric quality-estimation models [28]–
[37] estimate quality on the basis of a constant bitrate because
a constant bitrate for a certain video resolution (e.g., standard
definition (SD), 720p, and 1080i/p) is used in RTP-based
linear TV services. Although it is possible to estimate quality
for a short-term length, i.e., a segment for adaptive-bitrate
streaming, the conventional models cannot be used to estimate
quality that is affected by bitrate adaptation because the bitrate
and video resolution vary according to the network condition.
Although video-frame-type estimation is incorporated into
several models [29]–[32], [37], such estimation is unrealistic
in adaptive-bitrate streaming because it is difficult to detect
the first packet of a video frame (e.g., a marker bit in an
RTP header) in adaptive-bitrate streaming. The audio and
video bitrate and video resolution can be parsed using e.g.,
a media presentation description from metadata (MPD in
MPEG-DASH [4]) in a client. Therefore, it is necessary to
develop a model that takes audio and video bitrate and video
resolution per segment as input.

Audio-quality-estimation models, which output short-term
audio quality (approximately 10 to 30 sec in this paper) on
the basis of a constant bitrate have been extensively studied
and have reached high quality-estimation accuracy [28]–[32].
It is considerable that such audio-quality-estimation models
can be used to estimate the quality of a segment of length
e.g., 10 sec in adaptive-bitrate streaming.

Video-quality-estimation models, which output short-term
video quality, have been proposed [33]–[36]. These models
[33], [34] take only bitrate as input; thus, they cannot be used
to evaluate the impact of video resolution on video quality. The
T-V model [35] was developed for the SD and HD resolutions
on the basis of the bitrate, and the enhanced G.1070 model [36]
was developed for SD, VGA, CIF, and QCIF. However, these
models need to be optimized for a certain video resolution
because other video resolutions are used in adaptive-bitrate
streaming, e.g., 180p, 240p, 360p, and 720p. Therefore, it
is ideal to develop a model that takes video resolution (i.e.,
horizontal pixels and aspect ratio or number of pixels) and
bitrate as input and for which it is not necessary to optimize
the model for a certain video resolution.

An audiovisual-quality-estimation model that outputs short-
term audiovisual quality has been proposed [29], [38]–[40],
and it performs well in terms of quality-estimation accuracy.
It is notable that such audiovisual-quality-estimation models
can be used to estimate the quality of a segment, e.g., 10 sec,
in adaptive-bitrate streaming.

Long-term, i.e., 1- to 3-min content in this paper, coding
quality-estimation models have been proposed [41], [42].
Takanori et al. [41] modeled the impact of quality for short
segments and the temporal effect on the final video quality
in a 3-min video without audio. The model performed well
in terms of the quality-estimation accuracy. However, the
video resolution and audiovisual interaction were not taken
into account. Yun et al. [42] modeled the impact of bitrate
switching and, the primacy and the recency effect on the
final quality. They took into account the amount of bitrate
switching. However, the difference in quality before and after
switching was not considered in the model. If the difference in
quality before and after switching is small, it is not noticeable.
Therefore, if the number of switches is incorporated into the
model, the quality difference should be incorporated simul-
taneously. Video resolution and audiovisual interaction were
also not taken into account. Yun et al. also demonstrated that
their model, which estimates quality using the average quality
per segment, did not perform well in terms of the quality-
estimation accuracy. Therefore, the impact of the combination
of video resolution, adaptation, and audiovisual interaction on
audiovisual coding quality needs to be addressed.

B. Impact of Stalling on Quality

Conventional parametric quality-estimation models [29],
[37] can be used to estimate quality that is affected by a
stalling event. However, these models can only be applied to
constant-bitrate content, i.e., content without bitrate adapta-
tion. In the case of adaptive-bitrate streaming, it is necessary
to develop a model that can be used to estimate quality that
is affected by bitrate adaptation. Furthermore, even when the
total stalling length is the same for both, for example, 30-sec
and 3-min contents, the impact on the final quality is different
for each of them. Therefore, the impact of content length on
quality cannot be evaluated with such a model.

Kamal et al. proposed a bitstream-based model [43] that
can be used to estimate the quality affected by stalling events
of adaptive-bitrate streaming. Although this type of model is
out of the current paper’s scope because the QP is based on
the bitstream, as described in Section I, a part of the model
for stalling can be used to evaluate the impact of stalling on
quality. However, the impact of the interval between stalling
events and content length on quality cannot be evaluated
because the number, average length, and maximum length of
stalling events are taken as input.

Yao et al. proposed a media-based model [44] that takes
the number and duration of stalling events and the output
of the video quality metric (VQM) [10] as input. They also
proposed a bitstream-based model [45] that takes the number
and duration of stalling events and the motion vector as input.
Although these models are out of the current paper’s scope
because the output of the VQM is based on the media signal
and motion vectors are based on the bitstream, as described
in Section I, a part of the model for stalling can be used to
evaluate the impact of stalling on quality. However, the impact
of the interval between stalling events and content length on
quality is not taken into account in these models.
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C. Summary of Issues That Must Be Addressed

As described above, there are issues with estimating the
quality of a video of arbitrary resolution in short-term video-
quality-estimation models. However, conventional audio and
audiovisual-quality-estimation models can be used to esti-
mate the quality of a segment in adaptive-bitrate streaming,
as described above. In long-term audiovisual-coding-quality
estimation, the impact of the combination of video resolution,
adaptation, and audiovisual interaction on audiovisual coding
quality needs to be taken into account. To evaluate the impact
of stalling on quality, the content length needs to be taken
into account. To estimate the final audiovisual quality, i.e.,
media session quality, with high quality-estimation accuracy,
it is necessary to conduct a subjective test that varies the
combination of audio and video bitrate, video resolution,
bitrate adaptation, stalling events, and content length and to
model their characteristics.

III. PARAMETRIC QUALITY-ESTIMATION MODEL

We propose our parametric quality-estimation model in this
section. The block diagram shown in Fig. 1 was proposed by
ITU-T SG12, and we applied it to our model. In the model,
we take into account the issues that must be addressed, as
mentioned in Section II, where the impact of video framerate
reduction and initial loading on quality is out of the current
paper’s scope, as mentioned in Section I. Note that, in the
PNATS model, the framerate reduction is addressed because
the mobile mode is considered in addition to the PC mode.
Also note that the initial loading is addressed because the
advertisement issue mentioned in Section I is not considered.

A. Scope of the Parametric Quality-Estimation Model

Our parametric quality estimation model takes audio- and
video-related parameters, e.g., bitrate, and stalling event pa-
rameters, e.g., the number of stalling events, extracted from
a client as input because bitstreams are often encrypted to
protect content copyrights. The output of our model is the final
audiovisual quality, i.e., media session quality, of adaptive-
bitrate services for TV screens. To cover a wide range of
quality, 426 × 240 to 1920 × 1080 pixels, 100 to 10000 kbps
of video bitrate, and 64 to 196 kbps of audio bitrate can be
treated using our model because low-resolution and low-bitrate
content is provided to TV sets using Apple TV or Chromecast.
Regarding audio and video codecs, the combination of AAC-
LC and H.264/AVC (main profile and level 4.0) is supported
because they are widely used in TV sets. Although the profile
and level of H.264/AVC can be selected for the combination
of resolution and framerate to improve quality, a single profile
and level is assumed by the model presented in this paper
because, by definition, the model cannot have access to the
bitstream and because the main target of the model is TV
sets.

B. Extraction of Application-Layer Information

To estimate the audiovisual quality, i.e., media session
quality, for adaptive-bitrate streaming services, it is neces-
sary to extract application-layer information from a client.

To extract application-layer information, parameter extraction
modules need to be implemented into the client application,
and extraction modules must deliver parameters to the quality
estimation modules, as shown in Fig. 1.

The media parameter extraction module extracts the audio
and video bitrate and video resolution per segment from the
client, e.g., the MPD in MPEG-DASH, because an application
on the client first receives, for example, MPD from the server
to select media chunks/segments. The quality level changes
due to bitrate adaptation; thus, the audio bitrate [abr(t)], video
resolution [vrs(t), total number of pixels] and bitrate [vbr(t)]
are calculated and stored per second with the module. The
module delivers parameters to the audio and video quality
estimation modules.

To correctly play, applications/decoders need to manage
when stalling events occur and when playback is resumed. A
stalling event log with timestamps can be used to calculate the
stalling parameters. The buffer parameter extraction module
extracts the number of stalling events (N), total length of
stalling (L), and average interval between stalling events (A)
from the stalling event log with timestamps. The audiovisual
content length (T), which does not include the stalling length,
is extracted from the client. The module delivers parameters
to the quality integration module.

As one of the use cases, ExoPlayer provided by Google can
be used to extract media and stalling parameters on the basis
of the procedures described above.

C. Audio-Quality-Estimation Module

The audio-quality-estimation module outputs audio quality
per 1-sec sampling interval, i.e., the same as O.21 in Fig. 1,
by using the audio bitrate [abr(t)].

In general, audio quality is saturated to a maximum audio
quality, i.e., approximately 5, with sufficient audio bitrate and
decreases to 1 as the audio bitrate decreases. In addition, the
decrease degree depends on the codec implementation. This
characteristic is often modeled using a logistic function [29].
Therefore, audio quality is modeled using a logistic function,
i.e., the audio quality saturates to the maximum audio quality
(a1), and the decrease degrees are determined by coefficients,
a2 and a3, as follows:

AQ(t) = Max(1,Min(5,a1 +
1 − a1

1 + (abr(t)/a2)a3
)), (1)

where t = 1, 2, ..., and T is in seconds; abr(t) (kbps) is
calculated from the audio bitrate for a segment, e.g., when the
audio bitrate for the first 5-sec segment is 192 kbps, abr(t)
= 192 kbps (t = 1, 2, ..., and 5); AQ(t) represents the audio
quality per second; a1,a2, and a3 are constants and positive
values; the Max() function calculates the maximum value; and
the Min() function calculates the minimum value.

D. Video-Quality-Estimation Module

The video-quality-estimation module outputs video quality
per 1-sec sampling interval, i.e., the same as O.22 in Fig. 1,
using the video bitrate [vbr(t)] and video resolution [vrs(t)].
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Like audio quality, video quality is also saturated to a
maximum quality with sufficient video bitrate according to
the video resolution and decreases to 1 as the video bitrate
decreases. The characteristics are also modeled using a logistic
function, as observed in (2) [33]. The maximum video quality
according to the video resolution is not always saturated to
approximately 5, and the maximum video quality decreases
as the video resolution decreases. Therefore, it is assumed
that the characteristic can be modeled using a Michaelis-
Menten function, as observed in (3). The impact of the bitrate
reduction on video quality depends on the video resolution and
decreases as the video resolution decreases, as observed in (4).
Therefore, we model the video-quality-estimation module as
follows:

VQ(t) = VQMAX (t) +
1 − VQMAX (t)

1 + (vbr(t)/τ(t))v1
, (2)

VQMAX (t) = Max(1,Min(5,1 + 4 · v3 · vrs(t)
v2 + vrs(t) )), (3)

τ(t) = v4 · vrs(t) + v6

1 − exp(−v5 · vrs(t)) , (4)

where VQ(t) represents the video quality per second,
VQMAX (t) represents the maximum video quality per second
for a certain video resolution, and v1 through v6 are constants
with positive values. vrs(t) and vbr(t) are calculated on the
basis of the video resolution and bitrate for a segment, as in
abr(t).

E. Audiovisual-Quality-Estimation Module

The audiovisual-quality-estimation module outputs the au-
diovisual quality per 1-sec sampling interval, i.e., the same
as O.34 in Fig. 1, using the audio and video quality [AQ(t)
and VQ(t)]. This module is not depicted in the original block
diagram proposed by ITU-T (Fig. 1). However, to better
understand how the model works, it has been added to the
Pq module in our block diagram.

Audiovisual quality is expressed using audio quality and
video quality, and according to [29] and [38], the character-
istics can be modeled using a multiple regression function.
Therefore, the audiovisual-quality-estimation module can be
expressed as follows:

AVQ(t) = Max(1,Min(5,av1 + av2 · AQ(t)
+av3 · VQ(t) + av4 · AQ(t) · VQ(t))), (5)

where AVQ(t) is the audiovisual quality per second and av1
through av4 are constants with positive values.

F. Audiovisual-Integration/Temporal Module

The audiovisual-integration/temporal module outputs the
final audiovisual coding quality, i.e., the same as O.35 in
Fig. 1, using the audiovisual quality (AVQ(t)) and content
length (T).

The final audiovisual coding quality is affected by the audio-
visual quality per 1-sec sampling interval, the temporal effect,
and the content length. The impact of the temporal effect on
audiovisual coding quality increases as time increases; thus,
it is conceivable that the characteristics are modeled by an

exponential function, as observed in (7) and (8). The impact
of bitrate switching on quality needs to be incorporated in the
model. If the number of bitrate switches is taken as input,
the model also needs to consider the difference between video
qualities before and after switching. For example, there are
5 quality levels (i.e., QL0, QL1, QL2, QL3, and QL4). If
the difference in the quality between QL1 and QL2 is very
small (e.g., 0.1 in the 5-scale MOS), and if the difference in
the quality between QL3 and QL4 is large (e.g., 0.5 in the
5-scale MOS), the difference between QL1 and QL2 is not
noticeable, whereas the difference between QL3 and QL4 is
noticeable. Therefore, if the number of switches is incorpo-
rated into a model, the difference in quality before and after
a switch should be incorporated simultaneously. In addition,
bad audiovisual quality per 1-sec sampling interval has a large
impact on the final audiovisual coding quality. To take these
characteristics into account, we introduce a function of w2(t),
i.e., Eq. (9), and it is assumed that the characteristics can be
modeled using a linear function, as observed in (9). When the
quality is increased or decreased owing to bitrate switching,
the values of AVQ(t) and w2 are also increased or decreased. It
is conceivable that these features take into account the impact
of switching on quality. Therefore, the number of switches and
the difference between qualities before and after a switch are
not used in our proposed model to avoid the overfitting issue.
As a result, the audiovisual integration/temporal module can
be expressed as follows:

AVCQ =

∑T
t=1 w1(t) · w2(t) · AVQ(t)∑T

t=1 w1(t) · w2(t)
, (6)

w1(t) = t1 + t2 · exp(u(t)
t3

), (7)

u(t) = t
T
, (8)

w2(t) = t4 − t5 · AVQ(t), (9)

where AVCQ is the audiovisual coding quality for an audio-
visual content length (T =, e.g., 60 and 180 sec) and t1 to t5
are constants with positive values.

G. Quality Integration Module

The quality integration module outputs the final media
session quality, i.e., the same as O.46 in Fig. 1, by using the
audiovisual coding quality, stalling events, and content length.

The media session quality exponentially decreases as the
number of stalling events and the total length of stalling events
increase. Because the interval between stalling events also
affects the media session quality, we propose hypotheses for
the impact of the interval between stalling events on the media
session quality. When the interval between stalling events is
short, it is conceivable that the impact on media session quality
is small owing to temporal effects. If the interval is short, e.g.,
a few seconds, and the number of stalling events is two, users
would feel that the stalling event occurred once in a long
sequence, whereas if the interval is long, users would feel
that the stalling event occurred twice. From these hypotheses,
we introduced the average interval between stalling events.
When the average interval is short, the impact on the media
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session quality is small, and vice versa. The total length of
stalling and the average interval between stalling events are
normalized from the audiovisual content length because it is
thought that the stalling impact on quality depends on the
audiovisual content length. For example, the impact of a few-
second stalling event on the final quality differs depending on
whether the content length is short or long. In addition, there
is the possibility of using the viewing duration instead of the
content length. The improvement in estimation accuracy when
using either viewing duration or content length is almost the
same because the total stalling length normalized by either
the viewing duration or content length is also divided by the
coefficient in Eq. (11). To take these aspects into account, we
suggest that the stalling length be normalized by the content
length. These characteristics are modeled in (11).

The quality-integration module takes the number of stalling
events N , the total length of stalling events L (sec), the average
of the interval between stalling events A (sec), the audiovisual
coding quality AVCQ, and the content length T as input.
Therefore, the media session quality (MSQ) can be modeled
as follows:

MSQ = 1 + (AVCQ − 1) · S, (10)

S = exp(−N
s1
) · exp(−L/T

s2
) · exp(− A/T

s3
), (11)

where s1, s2, and s3 are constants with positive values.

H. Procedures for Calculating Coefficients

All the coefficients (a1, a2, a3, v1 to v6, av1 to av4, t1 to
t5, s1, s2, and s3) of our proposed model are calculated on
the basis of the least squares method using subjective data.
The calculation of coefficients proceeds as follows. In step
1, initial values are set for all coefficients, i.e., a1, a2, a3,
v1 to v6, av1 to av4, t1 to t5, s1, s2, and s3. In step 2, the
coefficients (a1, a2, and a3) of the audio quality estimation
module are trained. In step 3, the coefficients (v1 to v6) of
the video quality estimation module are trained. In step 4, the
coefficients (av1 to av4) of the audiovisual quality estimation
module are trained. In step 5, the coefficients (t1 to t5) of the
audiovisual integration/temporal module are trained. Finally, in
step 6, the coefficients (s1, s2, and s3) of the quality integration
module are trained. In each step, the target coefficients are
trained using all the training data, and the others are not
trained. Steps 2 to 6 are repeated until the error is minimized.

IV. SUBJECTIVE QUALITY ASSESSMENT TESTS

We conducted two subjective quality assessment tests [Ex-
periments 1 (1-min content) and 2 (3-min content)] to train
the model and verify its quality-estimation accuracy. All the
subjective data were our own confidential information; thus,
the data are only for our private use.

A. Audiovisual Content – Source Reference Circuits

To conduct a subjective test, high-quality content is re-
quired, and a large amount of long high-quality content is
not available for research. Therefore, we asked two profes-
sional video production companies, Q-tec and NTT-IT, to

(a) Experiment 1 (b) Experiment 2

Fig. 2. SIavg vs. TIavg in Experiments 1 and 2

shoot audiovisual content. This content was categorized into
sports, dancing, music, TV drama and shopping, cooking, and
scenery. A source reference circuit (SRC) that has various
spatial-temporal characteristics, e.g., spatial detail and motion,
needs to be selected for subjective tests, as described in ITU-
T Rec. P.910 [46]. According to ITU-T Rec. P.910, spatial
information (SI) is defined as the maximum standard deviation
of the pixels in each Sobel-filtered video frame (SImax), and
temporal information (TI) is defined as the maximum standard
deviation of the motion difference feature (TImax). However,
we also defined TIavg and SIavg using the average value to
determine the characteristics of an entire scene.

We used 30 different types of audiovisual SRCs, each lasting
1 min, in Experiment 1 and 11 different types of audiovisual
SRCs, each lasting 3 min, in Experiment 2. Scatterplots of the
relationships between SIavg and TIavg are shown in Fig. 2.
The average and maximum values of SI and TI are listed in
Table I. As Fig. 2 and Table I indicated, these values were
widely scatted.

The original video format was 1920 × 1080/30 fps.
All audio SRCs were normalized at the nominal level of

-26 dBov, and the sampling rate was 48 kHz.

B. Experimental Settings – Hypothetical Reference Circuits

The video was encoded using H.264 (main profile and
level 4.0), and the audio was encoded using AAC-LC. In
Experiments 1 and 2, 11 quality levels (QLs) for compression
were used, as listed in Table II. The segment length was 5 sec
when the group of picture (GoP) length was 1 sec, and the
segment length was 4 sec when the GoP length was 2 sec. In
Experiment 1, 30 hypothetical reference circuits (HRCs) were
used, as shown in Fig. 3. In Experiment 2, 11 HRCs were
used, as shown in Fig. 4. Here, "QL = -1" in Figs. 3 and 4
means that a stalling event occurred.

C. Test Stimuli – Processed Audiovisual Sequences

We used 60 processed audiovisual sequences (PAVSs) in
Experiment 1 (1-min test), as listed in Table III, and 22 PAVSs
in Experiment 2 (3-min test), as listed in Table IV, where the
number of each cell represents the PAVS number, the column
number represents the SRC number, and the row number
represents the HRC number in the matrix. Ideally, each SRC
should be assigned to all the HRCs if the SRC is short, e.g., a
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Fig. 3. HRCs in Experiment 1

Fig. 4. HRCs in Experiment 2

10-sec sequence. However, in the case of a longer sequence, it
is difficult to assign SRCs to all HRCs because the subjective

test duration should be limited, i.e., a subjective test longer
than 2 hrs should be avoided from the viewpoint of subject
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TABLE I
SI AND TI IN EXPERIMENTS 1 AND 2

(a) Experiment 1
SRC Title SIavg SImax TIavg TImax
101 Samba 59 95 20 96
102 Animal 70 147 13 61
103 Cooking 56 73 12 87
104 River 77 110 32 124
105 Piano 36 71 7 17
106 Athletics 47 79 25 105
107 Bicycle 59 72 8 50
108 Car 85 114 11 89
109 Classic 50 61 10 61
110 Dance 54 71 18 101
111 Family 36 74 10 79
112 Fish 38 72 13 30
113 Fried rice 70 102 6 78
114 Future world 45 78 16 45
115 Floor exercises and vault 39 69 16 67
116 Rings and pommel horse 35 51 13 64
117 Music clip 40 104 8 34
118 Jam 67 93 16 59
119 Japanese dance 66 72 8 19
120 Karate 52 91 20 85
121 Land 81 166 8 62
122 Marine life 51 77 16 42
123 Living 48 67 10 79
124 Makeup 31 42 6 68
125 Office 59 81 8 76
126 TV shopping 89 100 5 80
127 Grassland 53 80 17 64
128 Taxi 72 108 19 77
129 Train 91 147 11 90
130 Waterpolo 51 100 23 75

(b) Experiment 2
SRC Title SIavg SImax TIavg TImax
201 Animal 53 112 19 60
202 Badminton 45 78 21 85
203 Cooking 63 104 11 102
204 Train 71 126 17 111
205 Music clip 38 105 11 35
206 Japanese dance 66 73 9 19
207 Karate 55 128 19 89
208 Makeup 40 72 5 77
209 River 84 143 21 124
210 Samba 74 121 29 99
211 TV shopping 92 107 6 88

TABLE II
QUALITY LEVELS IN EXPERIMENTS 1 AND 2

QL Resolution Framerate GoP Video bitrate Audio bitrate
(pixels) (fps) (sec) (kbps) (kbps)

0 426×240 30 2 100 64
1 640×360 30 2 250 96
2 852×480 30 2 400 96
3 1280×720 30 2 1200 128
4 1920×1080 30 2 2000 128
5 426×240 30 1 150 64
6 640×360 30 1 350 96
7 852×480 30 1 500 96
8 1280×720 30 1 1600 128
9 1920×1080 30 1 2500 128

10 1920×1080 30 1 10000 196

fatigue and test reliability. In addition, if an SRC is repeated
many times, it becomes boring for subjects. Therefore, we
designed each SRC to be assigned only to two specific HRCs.

The drawback of this test design is that the impact of the
SRC on quality may not be observed. This issue needs to be
clarified in future work.

Each PAVS was encoded using the codec and an assigned
HRC. The PAVSs were decoded into YUV420/8-bit files and
WAV files. In the stalling HRC, we added loading to a frozen
video frame in the YUV domain and silent audio to the WAV
file.

The PAVSs were classified into two groups such that one
experiment could be conducted to train the model and the other
could be conducted to verify the quality-estimation accuracy
of the model for unknown data. That is, when Experiment 1
was used for the training data, Experiment 2 was used for
the validation data, and vice versa, i.e., cross-validation was
performed.

D. Subjective Quality Assessment Method and Environment

In the subjective quality assessment, the subjective audio-
visual quality, i.e., media session quality, was evaluated using
an absolute category rating (ACR) method with a five-grade
quality scale (5: Excellent, 4: Good, 3: Fair, 2: Poor, 1: Bad)
[47]. The quality descriptions on the rating scale were given in
Japanese. There was a training session and four sub-sessions
for each test. In Experiment 1 (1-min test), there were 15
PAVSs per training session or sub-session. In Experiment 2
(3-min test), there were six PAVSs for the training session, six
PAVs for each of the first two sub-sessions, and five PAVSs for
each of the last two sessions. There were 3-min breaks between
sub-sessions in both experiments. As a result, the total test
duration was less than 2 hours. The presentation order of the
PAVSs was randomized in these tests. We used a 42-inch LCD
monitor and headphones. Participants viewed each PAVS at a
distance of 3H (approximately 157.2 cm), where H indicates
the ratio of viewing distance to picture height, and listened to
each PAVS at a 73-dB(A) SPL.

E. Test Subjects

Twenty-four participants aged 20 - 39 participated in each
experiment. They were non-experts who were not directly
concerned with audiovisual quality as a part of their work;
therefore, they were not experienced assessors.

V. PERFORMANCE EVALUATION

We first trained our proposed model using training data and
then verified the quality-estimation accuracy of our proposed
model for the training and validation data.

A. Minimum Performance Requirement

This section describes our target quality-estimation accuracy
(minimum performance requirement). In ITU-T Rec. P.1201,
the performance of a model for higher- and lower-resolution
modes is described. The root mean square error (RMSE) and
Pearson’s correlation coefficient (PCC) were used to evaluate
the performance. The RMSE ranged from 0.32 to 0.52 for the
higher mode and from 0.36 to 0.65 for the lower mode. The
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TABLE III
PAVSS IN EXPERIMENT 1

SRC �HRC 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

101 101 131

102 102 132

103 103 133

104 104 134

105 105 135

106 106 136

107 107 137

108 108 138

109 109 139

110 110 140

111 111 141

112 112 142

113 113 143

114 114 144

115 115 145

116 146 116

117 147 117

118 148 118

119 149 119

120 150 120

121 151 121

122 152 122

123 153 123

124 154 124

125 155 125

126 156 126

127 157 127

128 158 128

129 159 129

130 160 130

TABLE IV
PAVSS IN EXPERIMENT 1

SRC �HRC 201 202 203 204 205 206 207 208 209 210 211

201 201 212

202 213 202

203 203 214

204 215 204

205 205 216

206 217 206

207 207 218

208 219 208

209 209 220

210 210 221

211 222 211

PCC ranged from 0.86 to 0.94 for the higher mode and from
0.70 to 0.95 for the lower mode.

As described in Section I, by definition, our target model
does not have a video-frame-type estimation module, although
the P.1201 model does. Because the RMSE and PCC of our
model seem worse than those of the P.1201 model, we used
the worst values, i.e., “RMSE ≤ 0.65” and “PCC ≥ 0.70,” as a
minimum performance requirement to verify that the quality-
estimation accuracy of the model is sufficient.

B. Cross-Validation (Training Data: Experiment 1)
We calculated the coefficients (a1, a2, a3, v1 to v6, av1 to

av4, t1 to t5, s1, s2, and s3) of the proposed model using 60
PAVSs for Experiment 1. We estimated the subjective qualities
for the training data, i.e., Experiment 1, and validation data,
i.e., Experiment 2. For the training data, the RMSE was 0.54,
and the PCC was 0.79. For the validation data, the RMSE
was 0.58, and the PCC was 0.85. The relationship between
the estimated quality and subjective quality for the training
and validation data is shown in Fig. 5.

C. Cross-Validation (Training Data: Experiment 2)
We conducted cross-validation by changing the training and

validation data. We calculated the coefficients (a1, a2, a3, v1
to v6, av1 to av4, t1 to t5, s1, s2, and s3) of the proposed model
using 22 PAVSs for Experiment 2. We estimated the subjective
qualities for the training data, i.e., Experiment 2, and validation
data, i.e., Experiment 1. For the training data, the RMSE was
0.50, and the PCC was 0.88. For the validation data, the RMSE
was 0.57, and the PCC was 0.78. The relationship between the
estimated quality and subjective quality for the training and
validation data is shown in Fig. 6.

D. Coefficient Sets of Parametric Quality-Estimation Model
Our proposed parametric quality-estimation model was well

trained because both the RMSEs and PCCs were almost the
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(a) Training (b) Validation

Fig. 5. Quality-estimation accuracies for training (Experiment 1) and valida-
tion data (Experiment 2)

(a) Training (b) Validation

Fig. 6. Quality-estimation accuracies for training (Experiment 2) and valida-
tion data (Experiment 1)

TABLE V
COEFFICIENTS OF PARAMETRIC QUALITY-ESTIMATION MODEL

Coefficients Value
a1 5.00000
a2 9.85820
a3 1.03576
v1 1.24070
v2 342504
v3 1.17954
v4 0.000312265
v5 0.996968
v6 48.3152
av1 0.000000
av2 0.000000
av3 0.0100822
av4 0.193344

Coefficients Value
t1 0.0477514
t2 0.0000747564
t3 0.196471
t4 0.0336057
t5 0.00728420
s1 5.27470
s2 36555.1
s3 1.16663

same for the cross-validation results even when the training
data were changed. Therefore, we optimized the coefficients
(a1, a2, a3, v1 to v6, av1 to av4, t1 to t5, s1, s2, and s3) of
our model using all 82 PAVSs for Experiments 1 and 2. The
coefficient values are listed in Table V.

The relationship between estimated quality and subjective
quality in Experiments 1 and 2 is shown in Fig. 7. As
listed in Table VI, the results indicated that quality-estimation
accuracy was sufficient because the RMSE and PCC satisfied
the minimum performance requirement.

(a) Experiment 1 (b) Experiment 2

Fig. 7. Quality-estimation accuracies in Experiments 1 and 2

TABLE VI
RMSES AND PCCS IN EXPERIMENTS 1 AND 2

All Experiment 1 Experiment 2
RMSE 0.54 0.55 0.52
PCC 0.82 0.79 0.88

(a) Experiment 1 (b) Experiment 2

Fig. 8. Quality-estimation accuracies for compression and adaptation in
Experiments 1 and 2

VI. CONSIDERATIONS

Some considerations should be noted to explain the results
in detail.

As described in Section II, the following issues need to be
addressed: a) the impact of the combination of video reso-
lution, adaptation, and audiovisual interaction on audiovisual
coding quality and b) the impact of content length on stalling
quality. Therefore, we discuss the RMSEs for all PAVSs (also
see Fig. 7), those without stalling, i.e., only compression
conditions (Fig. 8), and those with stalling (Fig. 9). Table VII
lists the RMSEs, and the number of PAVSs is indicated in
parentheses.

These results demonstrated that quality-estimation accuracy
was high for 54 PAVSs without the stalling event regardless
of the content length and combination of video resolution,
adaptation, and audiovisual interaction. However, the results
indicated that the quality-estimation accuracy was not suffi-
ciently high for 28 PAVSs with a stalling event.

We first explain that there were some plots with large
estimation errors, i.e., estimation errors larger than 1.0, in
PAVS147 (SRC114, HRC117), PAVS157 (SRC127, HRC104),
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(a) Experiment 1 (b) Experiment 2

Fig. 9. Quality-estimation accuracies for stalling events in Experiments 1 and
2

TABLE VII
RMSES FOR COMPRESSION AND STALLING

Type of PAVS All Experiment 1 Experiment 2
Compression and stalling 0.54(82) 0.55(60) 0.52(22)

Compression 0.45(54) 0.46(38) 0.43(16)
Stalling 0.68(28) 0.67(22) 0.71(6)
Stalling* 0.36(22) 0.39(18) 0.22(4)

*: PAVS129, PAVS132, PAVS130, PAVS131, PAVS210 and PAVS221 were
not included in the calculation of RMSE.

and PAVS208 (SRC208, HRC208). As described in Sec-
tion IV, two SRCs were assigned to an HRC. It is conceivable
that our audiovisual integration/temporal module estimated the
quality accurately because the quality estimation for one of the
two SRCs was fine. However, it should be considered that our
video quality estimation module could not evaluate the impact
of SRC on the quality for some of the content. Although,
by definition, our model cannot access the bitstream, if in-
formation about the bitstream (e.g., quantization parameter) is
available, the quality estimation accuracy could be improved.
We then explain why quality-estimation accuracy was low for
PAVSs with a stalling event. As shown in Fig. 9, some scatter
plots indicate low performance, i.e., estimation error larger
than 1.0. Because the subjective quality was approximately 4.0
in PAVS129(HRC129) and PAVS132(HRC129) even when a
stalling event occurred, we investigated their PAVSs. The video
frame in which the stalling event occurred was not degraded
owing to compression. Therefore, participants did not notice
any degradation during the stalling event. However, the video
frame where the stalling event occurred was degraded owing
to compression in PAVS130(HRC130), PAVS131(HRC130),
PAVS210(SRC210), and PAVS221(SRC210). Therefore, par-
ticipants noticed a large amount of compression degrada-
tion, i.e., block noise, during the stalling event. From these
investigations, it is conceivable that the impact of stalling
events on quality can be almost ignored when one occurs
with small compression degradation and that the impact of a
stalling event on quality increases during an event with a large
amount of compression degradation. However, by definition,
such quality impacts cannot be evaluated with the proposed
parametric quality-estimation model because it cannot take
media signals and bitstreams as input. Incidentally, PAVS129,

PAVS132, PAVS130, PAVS131, PAVS210, and PAVS221 were
not included in the calculation of the RMSE; therefore, the
RMSEs for the other 22 PAVSs are listed in Table VII. From
the results, we found that the RMSE for the stalling event was
not high when the extreme cases were removed.

From the evaluation of the quality estimation accuracy, it is
conceivable that the media session quality can be modeled
using Eqs. (1) to (11). Although the number of switches
is not incorporated into the model, the quality estimation
accuracy was sufficiently high. Therefore, it is conceivable
that functions AVQ(t) and w2(t) take into account the impact
of switching on quality.

The impact of stalling on the media session quality is
modeled using the exponential function; the total length of
stalling events and the average interval between stalling events
are linearly normalized by the content length. As described in
Section IV, PVSs with 4- to 24-sec stalling lengths were used
for both the 1-min and 3-min tests, and the quality estimation
accuracy for the stalling events for both the 1-min and 3-min
tests was high, with the exception of some extreme stalling
cases, as indicated in Table VII. The media session quality
was sometimes overestimated or underestimated. This issue
depends on whether the video frame in which the stalling event
occurred was degraded owing to compression. Therefore, it is
conceivable that the media session quality can be modeled well
by the exponential function; the total length of stalling events
and the average interval between stalling events are linearly
normalized by the content length.

VII. CONCLUSIONS

We have proposed a parametric quality-estimation model
that can be applied to estimate the quality of adaptive-bitrate
streaming services. We identified issues that need to be ad-
dressed from conventional studies regarding the impact of the
combination of an arbitrary video resolution, bitrate adapta-
tion, audiovisual interaction, stalling event, and content length
on quality. We developed a parametric quality-estimation
model for adaptive-bitrate streaming services to address these
issues. We conducted subjective quality assessment tests to
train our proposed model and verify its quality-estimation
accuracy. The results demonstrated that the model can be used
to estimate the quality of adaptive-bitrate streaming services
with high quality-estimation accuracy; when a stalling event
occurs and there is a slight or large amount of compression
degradation, the quality-estimation error will be large.

The following issues require further study. The individual
modules were not validated in terms of the quality estimation
accuracy. Therefore, subjective tests are required to validate
the individual modules. In addition, we assigned an SRC to a
specific HRC because of the limitation of the subjective test
duration; thus, the impact of SRC on the quality should be
investigated. We used the Main profile of the H.264 codec in
subjective tests, although the High profile is also used for TV
sets. Therefore, we need to verify whether our model can be
applied to quality estimation on the High profile used for TV
sets. Although the number of switches and the difference in
quality before and after the switches were not incorporated
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into the model, it is possible to improve the quality estimation
accuracy if both are incorporated. Therefore, we need to verify
whether there is an improvement of the quality estimation
accuracy for such a model. Our model was not validated
for extremely short or long intervals between stalling events.
Hence, subjective tests are required to investigate this issue.
We developed a model for TV sets in this work. Thus, we
need to verify whether our model can be applied to quality
estimation on smartphones, i.e., smaller screens. Additionally,
UHD video is becoming more popular. Therefore, our model
needs to be extended to higher video resolution. As described
in Section VI, there were some plots with a large error in
terms of the quality-estimation accuracy. Media-based and/or
bitstream-based quality-estimation models may be developed
because these offer the possibility of improving the accuracy
of quality estimation if media signal-based parameters (e.g.,
TI and SI) and/or bitstream information (e.g., quantization
parameters and motion vectors) can be used as input for
our model. The relationship between an advertisement and
initial loading was out of our paper’s scope. However, this
relationship should be investigated in future work.
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