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Abstract— As video-streaming services for mobile terminals
are becoming more popular, the volume of mobile traffic is
growing rapidly. To deliver traffic-heavy network services without
degrading users’ overall experience, one must examine service
characteristics and end-to-end network conditions. In this paper,
we propose “QUVE,” a framework for maximizing the user’s
quality of experience (QoE) of video streaming services. The
QUVE framework consists of two key components: a QoE
estimation model and QoE parameter estimation method. The
QoE-estimation model is based on the rebuffering count and time,
and content-encoding conditions. The QoE parameter-estimation
method estimates forthcoming network quality and the corre-
sponding rebuffering count and time that the user will experience.
The effectiveness of this framework was demonstrated through a
large-scale field trial for Niconico video service, one of the most
popular video-streaming services in Japan. We gathered more
than 1.4 billion pieces of feedback data from the in-service trial
and found that our framework enhances user QoE by selecting
the best encoding conditions suited for user network conditions.

Index Terms—Quality of Experience, video streaming service,
QoE maximization, QoE estimation, network quality estimation,
rebuffering condition estimation.

I. INTRODUCTION

V IDEO-streaming services have been becoming popular.
In 2014, the network traffic of such services comprised

64% of all Internet traffic [1]. Some services provide the
choice of very high bitrate content among other choices, such
as tens of Mbps, that cannot be delivered over a relatively
narrow-band network. In particular, in mobile environments,
network bandwidth is relatively narrow, and its variation is
higher than that of fixed-line environments due to the fluctu-
ation in wireless conditions. Therefore, a serious problem for
users and content providers is that viewing video content in a
mobile network environment incurs bitrate degradation and a
video playback interruption called rebuffering.

To address this problem, adaptive bitrate streaming (ABR)
methods [2], [3] have been recently standardized [4] and
implemented. With an ABR method, a content server has
video data with several encoding conditions, such as bitrate,
framerate, and resolution, and is divided into fragments of a
couple of seconds called “chunks.” An ABR client retrieves a
lower quality and smaller chunk when the network throughput
is low to prevent rebuffering, and it retrieves a higher quality
and larger chunk when the network throughput is high.
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However, the ABR method incurs initial and operational
costs for preparing several ABR-compatible encoding con-
ditions of content data and modifying the client player ap-
plication. Thus, some video-streaming services still adopt
a constant bitrate (CBR) based video delivery method. For
example, Niconico video service [5], one of the most popular
online video services in Japan, delivers videos with a CBR-
based method.

Therefore, it is also important to enhance user’s quality
of experience (QoE) for CBR streaming services without
replacing the existing equipment and content data. For this
reason, we focused on QoE enhancement for CBR streaming
services.

There have been several studies focused on techniques
for enhancing video-streaming QoE. For example, several
papers [6], [7] aim to enhance a single QoS or KQI, such
as the rebuffering ratio and or video bitrate. However, video-
streaming QoE does not depend on such a single parameter;
it is known that multiple parameters contribute to QoE [8],
[9]. Therefore, maximizing such a KQI parameter does not
maximize QoE. Maximizing user engagement, which can be
measured from the content-viewing time of each user, has
been investigated [10], [11]. An engagement index depends on
various factors, such as video quality, content quality, category,
and service fee structure. Therefore, maximizing engagement
does not necessarily maximize QoE.

In this paper, we propose “QUVE,” a QoE maximizing
framework for video-streaming. The QUVE framework rec-
ommends the encoding conditions to a streaming server or a
user that maximize user QoE in individual content viewing.
There are two challenges to implementing this framework:

1) establishing a QoE-estimation model for CBR video-
streaming

2) estimating the parameters needed for the model
We studied and developed solutions to these challenges for
QUVE and demonstrated it in a large-scale field trial for
Niconico video service.

The remainder of this paper is organized as follows. We
discuss the design space in Sec. II, and describe QUVE in Sec.
III. In Sec. IV, we explain the QoE-estimation model, and in
Sec. V, the QoE parameter-estimation method we developed
for the framework. We explain the results of a field trial in
Sec. VI and discuss related studies in Sec. VII. We conclude
the paper in Sec. VIII.

II. DESIGN SPACE

In this study, we aimed to maximize QoE for CBR video-
streaming services in the mobile environment. In a mobile
environment, network bandwidth is relatively narrow, available
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network throughput varies in a short period, and is largely
biased depending on the geographical location. It is also
important that the solution is applicable to existing facilities
and is effective. While taking these conditions into account,
we first discuss the design space for this goal by exploring
three natural dimensions: what, how, and where.

A. What

As mentioned in Sec. I, we adopted QoE as a measurement
index, which is usually modeled using the above-mentioned
indexes of QoS and KQI as parameters and is used as
an objective function in a quality-maximizing method. The
challenge is how to establish a QoE model that matches real
user experience.

B. How

There are three possible and currently feasible methods for
controlling video-streaming quality: streaming-server selec-
tion, encoding condition selection, and QoS control at network
elements.

A server-selection based method was demonstrated [10].
This method assumed that content is available from multiple
content delivery network (CDN) providers and that the end-
to-end network paths between a client device and servers
have different communication quality, that is, these paths
are disjoint. However, for a star topology network, like the
network in Japan, this assumption does not always hold true.
Consequently, the applicability of this method is narrow.

The selection of encoding conditions seems to be an imple-
mentable method for common video streaming services. The
servers are assumed to offer multiple encoding conditions of
content data for user convenience. In particular, the bitrate
value for receiving content is closely linked to the required
network quality. Therefore, it would be a huge benefit to user
QoE if we could select the encoding conditions suited for the
network conditions.

Quality of service (QoS) control at network elements can
be implemented in several ways. The ECN protocol [12] can
notify a client or server of network congestion. However, the
availability of this protocol is limited [13]. Aquarema [14],
[15] is a framework of QoS control at network elements to
enhance video service QoE. To introduce Aquarema to existing
mobile equipment, a resource controlling mechanism has to
be implemented at mobile base stations. There is no widely
available mechanism that can be triggered from outside the
mobile carrier.

Particularly, in a mobile network, the network condition
changes dramatically depending on time and location. There-
fore, it may be effective to change a streaming server or
encoding condition in the midst of video streaming to meet the
change in available network bandwidth. However, this involves
non-trivial reconstruction of a client, server implementation,
and possibly re-encoding of the prepared video data.

In summary, the above three methods for video-streaming
quality control seem to be valid from the aspect of effec-
tiveness. In contrast, from the aspect of applicability, only
the server-selection and encoding-condition-selection methods

are feasible in the current Internet. In addition, the encoding-
condition-selection method seems to have higher applicability
than the streaming-server-selection method because it does
not require multiple distributed servers or multiple CDNs.
Therefore, we selected an approach to select appropriate
encoding conditions from the perspectives of applicability and
effectiveness.

C. Where

There are three possible locations to implement the
encoding-condition-selection method mentioned above; in a
server, client, or in-between network elements.

In the server approach, many client devices usually commu-
nicate to a server; thus, the server can obtain a large amount
of network quality information from these devices. However,
it is often the cases that a content provider deploys multiple
servers, resulting in fragmentation of quality information.

In the client approach, a client device has very limited data
on network quality, so it will exhibit at a particular location.
In particular, a mobile device will exhibit differing network
quality at different locations and at different times of day.
Therefore, it is difficult to predict future network quality.

In the in-between network element approach, a network
element selects an appropriate encoding condition and applies
it by transcoding the video content in a product (see [16]).
However, it is not realistic to deploy this kind of network
element in every end-to-end path. Furthermore, if the video
streaming packets are encrypted or transferred over HTTPS,
transcoding at an in-between element is not feasible.

From these considerations, we adopt the server approach
and avoid the fragmentation of quality information by splitting
quality-related functions from content servers to a dedicated
server. The dedicated server gathers network quality infor-
mation from every client and estimates and recommends the
best encoding conditions by analyzing the gathered quality
information for each user request.

III. QUVE FRAMEWORK

On the basis of the design space discussion, we propose
a framework called QUVE, which aimed to maximize each
view’s video streaming QoE by selecting the best encoding
condition.

A. Overview

A video-streaming sequence using QUVE is illustrated in
Fig. 1. The QUVE server is located in the Internet, and is split
from streaming servers for ease of quality data aggregation.
The QUVE server can also be managed by different providers
than those of the streaming servers.

The details of the sequence are given below.
1) When a client user begins to view video content, the

user’s device sends a viewing request to a streaming
server attached with the device’s network information.
The network information, consisting of a mobile carrier
identifier and cell identifier (CID) of a mobile base
station, is used to identify the user location in the
network,
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Fig. 1: Video streaming with QUVE
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Fig. 2: QUVE server

2) The streaming server sends a recommendation request
to the QUVE server that includes the network informa-
tion received from the user device and content specific
information. The content specific information means the
encoding condition choices of the requested content that
are prepared at the streaming server.

3) The best encoding condition is calculated in the QUVE
server.

4) The QUVE server returns the best encoding condition
to the streaming server.

5) Streaming starts with the content of the recommended
encoding condition.

6) Upon viewing completion, the user device feeds back
the experienced network quality and network location
to the QUVE server.

To introduce QUVE to existing video-streaming client and
server equipment, user devices and streaming servers have to
implement the following additional functions. User devices
have to retrieve and send their network information when
starting to view content, measure network throughput while
downloading the video data, and feed back the throughput
results upon viewing completion. The streaming servers have
to implement the function to query encoding condition recom-
mendations to the QUVE server providing the user network
information and choices of the encoding conditions of the
requested content.

B. QUVE server

Upon receiving a recommendation request, the QUVE
server calculates the QoE value for each encoding condition
that the user will experience if the user selects the encoding
condition. To estimate the QoE of the video, previous studies
[8], [9] claim that the encoding and rebuffering conditions are
the key influencing factors. The encoding condition is received
from a streaming server, but the rebuffering condition cannot
be known before watching the video because it depends on
network quality.

Based on these insights, Fig. 2 illustrates the calculation se-
quence of the best encoding condition and feedback sequence
inside the QUVE server.

3-1) We estimate the network quality for a requesting
user using the network information provided by the
user. Using the estimated network quality, we further
estimate the corresponding rebuffering condition for
each encoding condition of the requested video con-
tent.

3-2) By combining the estimated rebuffering and encod-
ing conditions, the user QoE for each encoding
condition is calculated. The encoding condition that
maximizes the QoE is returned to the streaming
server.

7) Upon viewing completion, the user device feeds
back the pair of experienced network quality and
network-location information to the QUVE server.
The data are stored in the quality database, which
helps improve accuracy for future network-quality
estimation.

The above mentioned recommendation sequence has to be
performed before video streaming begins. Thus, the overhead
of processing and data transmission increases a user’s waiting
time for video playback. We also evaluated the overhead delay
and discussed its impact on user QoE in the field trial section.

C. Challenges

The QUVE framework consists of two key components.
One is the QoE-estimation model and the other is the QoE
parameter-estimation method required for QoE calculation.
The challenges of designing each component are described
below.

1) Designing QoE-estimation Model: Studies on QoE esti-
mation models for CBR video-streaming have been conducted
[17]–[19]. However, these models are constructed for different
resolution condition. Hence, we cannot compare the QoE
values of a video that has multiple resolutions. In addition,
these models do not support content longer than 10 seconds.
Therefore, we constructed a new QoE estimation model, as
discussed in Sec. IV.

2) Designing QoE Parameter Estimation Method: As men-
tioned above, the rebuffering and encoding conditions are nec-
essary for video-streaming QoE calculation. The rebuffering
conditions, such as the rebuffering count (RC) and rebuffering
time (RT), are determined by the content bitrate, time series
of available network throughput, and buffering behavior in
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Fig. 3: Overview of our QoE-estimation model

a client device. The challenge here is to estimate the pa-
rameters, such as network quality and rebuffering conditions.
Liu et al. [10] used past network-quality and rebuffering
information to estimate future network quality and future
rebuffering conditions. They used this information to select
the best streaming server and proved the effectiveness of this
approach. Hence, we follow the same approach of using past
network-quality information obtained at a client device. The
challenge is parameter estimation in a mobile environment. A
mobile environment is negatively affected by a large amount
of temporal variation and locational bias in network quality.
Therefore, we needed to develop a method for estimating the
network and rebuffering conditions for each user environment
with high accuracy. This QoE parameter estimation method is
described in Sec. V.

IV. QOE-ESTIMATION MODEL

In this section, we describe our QoE estimation model for
CBR-based video streaming.

To estimate the QoE of video, previous studies [8], [9]
claim that the encoding and rebuffering conditions are the key
influencing factors. Based on this insight, ITU-T Rec. G.1071
[19] has been proposed. However, G.1071 has two problems
when we adapt it to QUVE: we cannot compare the QoE
values of a video that has different resolutions, and we cannot
apply it to a video of less than 10 sec. Therefore, we conducted
a subjective quality assessment test to construct a new QoE-
estimation model that can handle a wider range of encoding
parameters, rebuffering conditions, and content duration (Dur).

Figure 3 shows the overview of our QoE-estimation model.
First, we constructed an encoding-aware QoE-estimation
model based on content-encoding-related information, such
as bitrate, framerate, and resolution. Second, we constructed
a rebuffering and duration-aware QoE-estimation model. By
combining these two QoE-estimation models, we constructed
our QoE-estimation model for our framework, which solves
the above problems.

A. Subjective Quality Assessment Conditions

The conditions of the subjective quality assessment test used
to construct our QoE-estimation model are described below.
These experimental conditions were determined based on ITU-
T Rec. P.910 [20].

In the test, video quality was assessed using a five-point
absolute category rating (ACR) method. Participants watched
a video with a five-inch smartphone and assessed it on a five-
point scale (1: Bad, 2: Poor, 3: Fair, 4: Good, 5: Excellent).

We prepared 8 different types of video content for the
assessment such as “nature,” “sports,” “animation,” etc. Each

TABLE I: Test Conditions

Encoding condition Values

Codec H.264
Bitrate 100, 200, 370, 500, 700, 1000, 1600, 3200, 6400,

12800 kbps
Resolution 320x180, 480x270, 640x360, 960x540, 1280x720
Framerate 10, 15, 30 fps
Content duration 10, 30, 60, 120, 210 sec
Rebuffering time 0, 4, 8, 16 sec
Rebuffering count 0, 1, 2, 4, 6, 7 times

1

2

3

4

5

100 400 1600 6400 25600

M
O

S

Bitrate [kbps]

640x360 10fps

640x360 15fps

640x360 30fps

960x540 15fps

1280x720 15fps

95% CI

Fig. 4: MOS difference depending on encoding conditions

video was encoded with a variety of encoding conditions.
Table I lists the encoding conditions used in the test. We used
the experimental design to reduce the number of experiments
and reduced these conditions to 138.

Twenty-four people aged 20–29, male and female, partic-
ipated in this experiment. They were non-experts, not con-
cerned with video quality assessment as part of their work,
and not experienced assessors.

B. Encoding-aware QoE-estimation Model

In this subsection, we discuss the construction of the
encoding-aware QoE-estimation model. Here, we focus on
the MOS difference in encoding conditions but not that in
rebuffering conditions or Dur. To construct this QoE model,
we extracted 75 of the test conditions described in the above
subsection. All the conditions had a fixed content length of 10
sec and had no rebuffering events.

To examine the characteristics of the model, we first an-
alyzed the mean opinion score (MOS) difference depending
on the encoding conditions. Figure 4 shows the results of the
subjective quality assessment test. The x-axis is the content
bitrate and the y-axis is the MOS, and lines are drawn for
each condition of resolution and framerate.

Figure 4 shows the following four characteristics.
1) the MOS followed an S-curve based on the bitrate
2) the minimum MOS score was 1, and the MOS increased

as the bitrate increased
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3) the maximum MOS score is defined by resolution and
framerate

4) the inflection point is defined by resolution and framer-
ate

Considering characteristics 1, 2 and the existence of the
inflection point, we used a logistic model to construct the
encoding-aware QoE-estimation as Eq. (1).

QoEC = I1 +
1− I1

1 + ( bitrateI2
)i1

(1)

Coefficient I1 in Eq. (1) means the maximum value of
QoEC . This value depends on framerate and resolution, as
mentioned in characteristic 3. In addition, QoEC ranges from
1 to 5 according to the MOS definition [21]. Considering these
characteristics, we constructed a model to calculate I1 from
the resolution and framerate. Figure 5a shows the relationship
between the resolution and I1, and shows the following two
characteristics.

1) I1 increased as the resolution increased.
2) The increase rate decreased as the resolution increased.

Therefore, we constructed another I1 model using a hyperbolic
curve model, as Eq. (2).

I1 =
I3 · rs
i2 + rs

+ 1 (2)

Next, to take into account the framerate, we constructed a
model to calculate I3 in Eq. (2) using the framerate. Figure
5b shows the relationship between I3 and framerate, and I3
had the following characteristics.

1) I3 became 0 when the framerate was 0
2) It increased as the framerate increased, and converged

to 4.
3) The I3 increasing rate reduced when the framerate

became higher.
On the basis of these characteristics, we modeled I3 as Eq.
(3).

I3 = 4 · (1− exp(−i3 · fr)) (3)

Next, we constructed a model for coefficient I2 in Eq. (1).
The I2 indicates the x-axis value at the inflection point, and
it varies depending on framerate and resolution, as detailed in
characteristic 4. We followed the same manner as for I1 to
construct the model for I2. Figure 5c shows the relationship
between resolution and I2 and shows that

1) I2 became 0 when the resolution was 0.
2) It increased as resolution increased.
3) The I2 increasing rate reduced when the resolution

reached a certain value.
On the basis of these characteristics, I2 is modeled as Eq. (4).

I2 =
i4 · rs+ I4

1− exp(−i5 · rs)
(4)

To take into account the framerate in Eq. (4), we modeled
I4 using the framerate. Figure 5d shows the relationship of I4
and framerate and shows that

1) I4 became 0 when the framerate was 0.
2) it increased as the framerate increased.
3) the I4 increasing rate reduced when the framerate be-

came higher.
On the basis of these characteristics, we used the logarithmic
model to model I4 as Eq. (5).

I4 = i6 · log(i7 · fr + 1) (5)

Parameters i1–i7 can be determined and optimized by
applying the results of the subjective quality assessment tests.

C. Rebuffering-aware QoE-estimation Model

We conducted a subjective quality assessment test to extend
our encoding-aware QoE-estimation model to handle the dif-
ference in rebuffering conditions. In this test, under the test
conditions described in Table I, we changed the encoding and
rebuffering conditions with fixed Dur. In total, 15 conditions
were tested, and the results were used to construct this model.

To clarify the effect of QoE degradation due to rebuffering,
we examined the relationship between the bitrate and MOS
with various rebuffering conditions. The result is shown in Fig.
6. In this figure, “4sec*2,” for example, means there were two
4 sec rebuffering events. This figure illustrates that

1) MOS decreased as RC and total RT increased
2) MOS decreased as RT increased even when the sum

total of the rebuffering time was the same.
In this paper, RT is defined as the average rebuffering time of
all rebuffering events. On the basis of these analyses, the rate
of MOS decrease due to rebuffering (DR) is modeled as Eq.
(7), and the rebuffering-aware QoE-estimation model as Eq.
(6).

QoE = (QoEC − 1)(1−DR) + 1 (6)

DR = c1 log

(
RC

RT
+ 1

)
1− cRC

2

1− c2
(7)

D. Duration-aware QoE-estimation Model

We conducted another subjective quality assessment test to
extend the rebuffering-aware QoE-estimation model to handle
the difference of Dur. In this test, we used the same 83
conditions mentioned in Subsec. IV-C. This data was used
to construct the duration-aware QoE-estimation model.

The important factors related to a video-service QoE esti-
mation model are degradation due to encoding and rebuffering.
Therefore, we analyzed the effect of the difference in Dur on
each type of degradation.

First, we analyzed the effect of the difference in Dur on
encoding degradation, that is, we analyzed the test conditions
with no rebuffering event. Figure 7 shows the relationship
between MOS and Dur, and the MOS and encoding degra-
dation did not change depending on the Dur. Therefore, we
concluded that Dur does not impact encoding degradation.

Second, we analyzed the effect of Dur on QoE degradation
due to rebuffering. Figure 8 shows the relationship between
the total RT and 1−DR with various Dur. and shows that
1−DR increased with an increase in Dur. This means that the
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Fig. 5: Characteristics of I1–I4
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Fig. 6: MOS vs. bitrate for various rebuffering conditions
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Fig. 7: MOS vs. Dur for each encoding condition

longer the video duration becomes, the less effect rebuffering
has. Furthermore, we confirmed that bitrate, resolution, and
framerate do not affect the decrease in QoE.

We then introduced Slope to adjust DR to correct it and
handle the effects of Dur in Eq. (8).

DR′ = Slope ∗DR (8)

Figure 9 indicates the relationship between Slope and Dur
and shows that
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Fig. 8: 1−DR vs. total RT for each content duration
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Fig. 9: Slope vs. Dur

1) Slope became 1.0 when Dur was 10 sec.
2) Slope decreased when Dur increased.
3) Slope rate of decrease became lower as Dur became

higher.
On the basis of these analyses, we modeled Slope as Eq. (9).

Slope =
c3

Dur + 10
+ c4 (9)
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Fig. 10: Accuracy evaluation of encoding-aware QoE-
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TABLE II: RMSE and PCC of estimated and measured MOSs
in encoding-aware QoE estimation model

Evaluation index Value

RMSE 0.131
PCC 0.990

Parameters c1–c4 can be determined and optimized by
applying the results of these subjective quality assessment
tests.

E. Evaluation

This subsection contains the accuracy evaluation results for
the QoE-estimation models discussed in Subsec. IV-B and
IV-D. We used the Pearson product-moment correlation coef-
ficient (PCC) and root mean square error (RMSE) to evaluate
whether our complete QoE-estimation model is sufficient. The
performance criteria for the model were set as described below.

1) PCC ≥ 0.94
2) RMSE ≤ 0.27

We followed the manner of ITU-T Rec. J.247 models [22]
and adopted these as the criteria.

First, we evaluated the encoding-aware QoE-estimation
model. We conducted a new subjective quality assessment test
under 55 of the conditions that did not include rebuffering
events, and had a 10 sec content length. Other conditions
followed those in Table I.

The results are shown in Fig. 10. The x-axis is the MOS
in the subjective quality assessment test, and the y-axis is the
estimated MOS. The closer to the diagonal line the plot is
placed, the more accurate the encoding-aware QoE-estimation
model is analyzed to be. Most of the plots are placed near the
diagonal line, which shows that the estimated MOS calculated
with the encoding-aware QoE-estimation model was close to
the actual measured MOS. Table II shows that RMSE was
0.131 and PCC was as high as 0.990. These results indicate
that this model satisfies the performance criteria. Another
advantage of this model is the support for high-definition video
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Fig. 11: Improvement in QoE-estimation accuracy with Slope

TABLE III: RMSE and PCC of estimated and measured MOSs
in duration-aware QoE-estimation model

RMSE PCC

Corrected with Slope 0.214 0.940
Not corrected with Slope 0.324 0.847

content. We confirmed that the estimation accuracy for this
kind of content had an RMSE of 0.172, which showed that
this model is also effective for this kind of content.

Second, we evaluated the duration-aware QoE-estimation
model that handles RT and Dur.

For the evaluation dataset, we used the same data mentioned
in Subsec. IV-D. We conducted a 10-fold cross validation
as the evaluation method; that is, we used randomly chosen
nine tenths of data for learning parameters (i1–i7, c1–c4),
and the remaining one tenth for the evaluation. We conducted
this evaluation ten times until all the data were used for the
evaluation.

The evaluation results are shown in Fig. 11 and Table III.
The x-axis is the measured MOS and y-axis is the estimated
MOS. The RMSE, when not considering Dur, was 0.324 and
the PCC was 0.847, which did not satisfy the performance
criteria. However, the RMSE when considering Dur was
0.214 and the PCC was 0.940, which satisfy the performance
criteria. Figure 11 shows that the estimated MOS of this
model was close to the actual measured MOS. Therefore, the
accuracy of this model was confirmed.

In the field trial mentioned in Sec. VI, we used a QoE-
maximization framework that is based on our complete QoE-
estimation model. The coefficient values in the field trial are
listed in Table IV. These coefficients were calculated from all
the data described in Subsec. IV-D.

V. QOE-PARAMETER-ESTIMATION METHOD

As shown in Fig. 3 in Subsec. IV-D, our complete QoE-
estimation model requires bitrate, resolution, framerate, RC,
RT , and Dur as the parameters. The bitrate, resolution,
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TABLE IV: Coefficient values of QoE-estimation model used
in field trial

Coefficient Value

i1 1.506228563
i2 45539.70182
i3 0.133277280
i4 0.000361413
i5 0.000262812
i6 456.0187229
i7 0.065806646

c1 0.400750213
c2 0.719806312
c3 9.046965443
c4 0.763117912

framerate and Dur are available at a streaming server that
stores video content. However, the rebuffering conditions are
not available until the actual video streaming is finished.
Therefore, we designed a QoE parameter-estimation method
for estimating the rebuffering conditions before streaming is
started.

Our method has the following two features.
1) two estimation steps: network quality estimation and

rebuffering conditions estimation
2) rebuffering conditions estimation is based on the emu-

lation of the buffer transition
As described in Sec. III, a mobile environment is negatively

affected by a large amount of temporal variation and locational
bias in network quality, so the challenge is to estimate mobile
network quality with high accuracy. We examined the charac-
teristics of the mobile-network environments, and constructed
an estimation method that predicts the average and standard
deviation of network quality for each mobile base station.
Then, based on these, we estimate RC and RT using the
estimated transition of the amount of client device buffer.

A. Network-quality Estimation

In this subsection, we describe our QoE parameter-
estimation method in terms of estimating network quality,
i.e., throughput average and throughput standard deviation. To
estimate future network quality, we use the selected network-
quality-information data stored at the QUVE server that were
measured under similar conditions. This is because network-
quality values under similar network conditions are considered
to have stationarity. The statistics calculated from these data
is expected to estimate future network quality in a mobile-
network environment.

To estimate the future network quality for users with high
accuracy, we have to clarify which parameters of a user’s
network environment should be used. Therefore, we conducted
a preliminarily experiment of throughput distribution by using
Niconico-video-service users’ feedback data.

1) Conditions used to estimate network quality: We an-
alyzed the actual video-streaming data to develop our QoE
parameter-estimation method based on past network-quality
information under similar conditions.
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Fig. 13: Throughput transition in mobile site

In recent mobile network environments, the access network
part is more likely to be the bottleneck point than the server,
in-between network, or client device parts. Thus, we focused
on the mobile-access network part and analyzed the network
throughput from the perspective of the mobile CID. We did
not consider cases in which there is a bottleneck point in the
backbone-network or client-device part.

Figure 12 illustrates the distribution of the average through-
put for each CID that had more than one hundred pieces
of feedback data. It shows that the throughput largely varied
depending on the CID and that we need to take into account
the CID factor.

Figure 13 shows the transition during one day of average
network throughput in an LTE environment. It shows that
throughput also varied largely depending on the time slot of a
day and that we need to take into account the time slot factor.

2) Network-quality-estimation part of our method: We de-
scribe the network-throughput-estimation part of our method
based on the condition analyses above.

Feedback data having the same values for both factors, that
is, the time slot in a day and CID, would be ideal for estimating
future throughput. However, we cannot always have enough
feedback data to achieve accurate throughput estimation for



IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 11, NO. 1, FEBRUARY 2017 9

TABLE V: Symbols used in this subsection

Symbol Parameter

BR encoding bitrate
Dur content duration
T average throughput
Tstd 　 standard deviation of throughput
Thinit threshold of start playing
Thresume threshold of resume playing
Thstop threshold of stop playing

every location. This is because there are more than hundreds
of thousands of mobile cells at least in Japan.

Therefore, we introduced the following multiple-granularity
grades of matching rules to select the feedback data for
throughput estimation.

1) CID match rule
Both the time slot and CID match the estimating condi-
tion.

2) eNodeB match rule
Same as above except that the part of CID is used.
Only the upper (left-most) 20 bits are used for eNodeB
matching 1.

3) No location match rule
Only the time slot matches the estimating condition.

With our method, the first grade rule is tried first. If a sufficient
amount of feedback data that match the condition is stored in
the database, their average and standard deviation are used for
estimation. If not, the coarser granularity grade rule is tried
until a sufficient amount of data is found.

B. Rebuffering-time Estimation
In this and next subsection, we describe the rebuffering-

condition-estimation part of our estimation method, that is,
RC and RT , using the average throughput and throughput
standard deviation of the network-throughput data described in
Subsec. V-A. In this paper, the symbols used in this subsection
are listed in Table V.

When the standard deviation of throughput Tstd is 0, RT
can be calculated in a closed-form expression. Therefore, we
start with the rebuffering time RTstd0 of such a case and
extend it to handle Tstd to calculate the RT .

We start with an equation when the Tstd is 0. Figure 14
shows the client device buffering behavior and how rebuffering
occurs, which is called leaky bucket model [24], [25]. A
video starts playing when a playback buffer exceeds a certain
threshold, called the “threshold of start playing (Thinit)”.
After starting the video, the buffer starts decreasing if the
throughput is less than the content bitrate. Once the buffer
drains below another threshold, called the “threshold of stop
playing (Thstop)”, the playback stops while filling the buffer to
a certain amount. After the buffer exceeds that certain thresh-
old, playback resumes. We call this threshold the “threshold of
resume playing (Thresume)”. In some player implementations,
Thinit and Thresume are the same.

1In LTE, CID consists of 28 bits. The upper 20 bits represent an eNodeB
identifier, and the lower 8 bits represent an antenna identifier attached to the
eNodeB [23].

!"#$%&

'()$*

+(,$*

!"#$% !"#$% !"#$%&'()% &'()%

DR ·BR− Thinit

T

Thinit

Thresume

Thstop

Fig. 14: Buffering behavior and rebuffering occurrence

TABLE VI: Parameters for generating throughput dataset

Parameter Value

BR 500 kbps
Dur 500 sec
T 200–800 kbps
Tstd/T 0–1
Thinit 12–37 Mbit
Thresume 2–12 Mbit
Thstop 0 Mbit

Considering this behavior of a video player, we can calculate
RTstd0 by using Eq. (10).

RTstd0 =
Dur ·BR− Thinit

T
−Dur (10)

Next, we extend this equation to support the Tstd and
calculate RT . In this case, unlike RTstd0, we cannot construct
a closed form expression. Therefore, we use the following
process.

1) We generate an artificial and likely throughput transition
based on T and Tstd.

2) We estimate the transition of the playback buffer state
using the throughput transition and selected encoding
bitrate to calculate the estimated RT .

3) We apply steps 1 and 2 to various throughput conditions
and analyze the relationship between RTstd0 and RT .

4) On the basis of the relations in step 3, we design a best-
fitting regression expression.

The generation of an artificial throughput transition is
described below. There is no commonly used model for
fitting the network throughput transition. Therefore, for ease of
generation, we used a random walk. We calculate the average
throughput and throughput standard deviation of the generated
transitions and extracted the transitions that have the same
average throughput and throughput standard deviation as T
and Tstd. Using these generated throughput-transition data, we
follow the leaky bucket model to design the RT -estimation
part.

We conducted a simulation test by applying the above
process to the various throughput conditions listed in Table
VI. For each condition (Thinit, Thstop, T , Tstd/T ), we
generated as many as 100 patterns of throughput transitions
and calculated the average RT .

The results of the simulation test are in Fig. 15. When the
Tstd/T became large, the line form of RT gradually became
rounder, and the increase rate of RT gradually decreased.
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Fig. 15: RT vs. RTstd0 for each Tstd0/T
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Since this behavior is close to that of a hyperbolic curve,
we model RT by using a hyperbolic function as Eq. (11).
This equation is derived by rotating the hyperbolic function
x2

a2b2 −
y2

b2 = −1 by the degree of θ = − arcsin 1√
1+a2

. Here, a
is a parameter to control the increase rate, and b is a parameter
to control roundness.

RT =
a ∗RTstd0 + a

√
RT 2

std0 + b2(a2 − 1)

a2 − 1
(11)

Next, we designed a model for estimating a and b in Eq. 11
using Tstd/T . Figure 16 shows the transition of a depending
on the transition of Tstd/T . This figure shows the following
characteristics of the relation between Tstd/T and a.

1) a converges to a certain value when Tstd/T is large or
small enough.

2) The slope at the inflection point is not infinite.

Moreover, when Tstd = 0, RT should be equal to RTstd0.
Thus, the angle of the asymptotic line should be 3π/4, and
a needs to be equal to tan(3π/8). Considering the above
characteristics, a is approximated as Eq. (12), using the
Boltzmann equation.
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Fig. 17: Relationship between Tstd/T and b

TABLE VII: Coefficients in RT estimation equation

Coefficient Value

a1 2.675910
a3 0.657144
a4 0.053802
b1 14.95978
b2 54.04936

a = a1 +
a2 − a1

1 + exp

(
Tstd
T −a3

a4

) (12)

a2 = tan(3π/8) (13)

Next, we designed an estimation equation of b. Figure 17
shows the relationship between b and Tstd/T . The relationship
between Tstd and b follows a moderate quadratic curve.
Therefore, we modeled b using the quadratic function in Eq.
(14).

b = b1 ∗
(
Tstd

T

)2

+ b2 ∗
Tstd

T
(14)

The values of the coefficients a1, a3, a4, b1, b2 are listed in
Table VII. These values are calculated using the least-square
method.
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TABLE VIII: Coefficients in RC-estimation equation

Coefficient Value

a1 1.490317
a3 0.621836
a4 0.186416
b1 30660.81
b2 3193.760
b3 0.949078
b4 0.421037

C. Rebuffering-count Estimation

We used the same RC-estimation model as in a previous
study [26]. Equation (15) is the RC-estimation part of the
method we developed.

RC =
a ∗ SCC + a

√
RCC2 + b2(a2 − 1)

a2 − 1
(15)

RCC = RCstd0 − C (16)

C =
b2a2 − (a2 − 2a− 1)RC2

max

2RCmaxa
(17)

RCmax =
BR ∗Dur − (Thinit − Thresume)

Thresume − Thstop
(18)

a = a1 +
a2 − a1

1 + exp

(
Tstd
T −a3

a4

) (19)

a2 = tan(tan 3π/8) (20)

b =
c1

Thresume − Thstop
+ c2 (21)

c1 = b1
Tstd

T
+ b2 (22)

c2 = b3
Tstd

T
− b4 (23)

The values for a1, a3, a4, b1 · · · b4 are listed in Table.VIII.
These values are calculated using the least-square method.

D. Evaluation

In this subsection, we evaluate our QoE parameter-
estimation method for RC, and RT .

We begin with the evaluation of the RC estimation part of
our method. We used the actual measured data of Niconico
video streaming service. The evaluation data were collected
from all users of the Niconico player application. The data
contain the T , Tstd, CID, and RC for each viewing. We used
data collected during June 2015 for learning the network qual-
ity data for each measured CID and data collected during July
2015 for evaluation, where we compared the RC estimated
with our QoE parameter-estimation method, which includes
network-quality-estimation, with the actual RC.

Figure 18 shows the evaluation results. The x-axis is the
estimated RC and y-axis is the average actual RC. The PCC
and RMSE scores were 0.955 and 1.06, respectively. From this
figure, the method estimated the RC with high accuracy, but it
tended to output lower RC values. This seems to be because
the video-seek operations were counted as a rebuffering event
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Fig. 19: RT evaluation in simulation

TABLE IX: Parameter ranges used in equation

Symbol Parameter

T 50 · · · 2050
Tstd/T 0.0 · · · 1.2
Thstop 0.0 · · · 5000
Thresume (Thstop + 500) · · · (Thstop + 15500)
Thinit (Thresume + 500) · · · (Thresume + 40500)

due to the implementation limitation. the collected data do
not distinguish user triggered rebuffering events, such as a
seek operation done by a user, from network-quality triggered
events. We could not collect the user seek operation data due
to implementation limitation.

Next, we evaluated the RT estimation part. Unfortunately,
we could not collect the actual RT data in the field due to the
limitation of the application implementation again. Therefore,
we conducted a simulation test.

First, we set each parameter by using the least-square
method to minimize the error between the method and data
generated in the range given in Table VI. Next, we evaluated
the accuracy of our method by using a wider range of pa-
rameters. We randomly generated as many as 10,000 samples
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within the ranges in Table IX.
We show the simulation results in Fig. 19. The PCC was

0.999, and RMSE of RT was 5.95.
From the above two evaluations, we can confirm the accu-

racy of the method for estimating RC and RT .

VI. FIELD TRIAL

In this section, we explain the results of a large-scale field
trial. In this field trial, QUVE was applied to the Niconico
video service operated by Dwango Co., Ltd. This service is
one of the biggest video streaming service in Japan and has
more than 50 million registered users [27].

We applied QUVE to the in-service application, collected
video viewing quality feedback data from all iOS and Android
users and conducted recommendation of the encoding condi-
tions to all Android users. All Niconico users could watch
videos freely and QoE was calculated with our estimation
model described in Subsec. IV-D. To further analyze the
effectiveness of QUVE, we gathered actual RC from user
devices in addition to the result feedback data described in
Fig. 2.

We conducted an A/B test for the Android users by dividing
them into two groups: one with the encoding condition rec-
ommendation with our framework (Proposed) and the other
without recommendation (Default). As it is an in-production
service policy, we cannot describe the complete behavior of
the bitrate selection of Default, but we can note that Default
chose relatively lower bitrates for mobile users. Another point
of behavior is that the bitrate selection of Default did not
depend on the user environment, e.g., whether a user was in
a congested area or not, which was adopted in Proposed.

In this field trial, about 1.4 billion quality feedback data was
stored and 1,053,134 feedback data during an 18-day period
was evaluated. This is because QUVE needs sufficient amount
of feedback data to recommend the appropriate encoding
condition.

A. QoE evaluation

First, we compared the QoE of each group. Figure 20 shows
the cumulative distribution function (cdf) of the QoE. The x-
axis is the QoE starting with a MOS value of 1 and ranging
to 5. The y-axis is the cdf of the MOS. These results indicate
that Proposed achieved a higher QoE distribution than that of
Default.

To clarify why the QoE improved, we further analyzed
the encoding bitrate and rebuffering ratio2. Figure 21 shows
the selected encoding bitrate distribution for each group. The
reason the cdf value for the bitrate of 3000 kbps was under
1.0 is that there are videos that were prepared with only one
higher-bitrate format. This result shows Default selected a
lower bitrate compared with Proposed. More precisely, 95%
of viewings were delivered in a bitrate lower than 500 kbps for
Default. In terms of rebuffering, Table X shows the rebuffering
ratio for each group. These results indicate that Proposed
caused higher rebuffering ratio than Default. It should be noted

2ratio of viewing data that suffered from one or more rebuffering events

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1 2 3 4 5

C
d

f

MOS

Proposed

Default

Fig. 20: QoE distribution for each group

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0 500 1000 1500 2000 2500 3000

C
d

f

Bitrate [kbps]

Proposed

Default

Fig. 21: Bitrate distribution for each group

that the ratio of both groups seemed to be higher than the
actual ratio. This is because the video-seek operations were
counted as a rebuffering event due to the implementation
limitation.

From these analyses, it seems that Default achieved a lower
rebuffering ratio because of a lower bitrate selection. However,
according to the encoding-aware QoE-estimation model (Eq.
1), the QoE was limited below 2.7 for 500 kbps or lower
encoding bitrate even without rebuffering. This means that
almost all the QoE values of Default were lower than those
of the QoE delivered with, for example, over a 1400 kbps
bitrate and 4 sec of rebuffering (see Fig. 6). On the other
hand, Proposed selected a bitrate of over 500 kbps for 30% of
viewings. This indicates that the encoding-aware QoE value of
Proposed tended to be higher than that of Default. However, a
higher rebuffering ratio was exhibited in Proposed, as shown
in Table X. Therefore, taking these analyses into account, in
Proposed, it seems that the QoE gain from the higher bitrate
exceeded the QoE loss of the higher rebuffering ratio.
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TABLE X: Rebuffering ratio for each group

Group Rebuffering ratio

Default 9.68 %
Proposed 12.77 %
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Fig. 22: Distribution of bitrate of Proposed in congested and
non-congested situations

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1 2 3 4 5

C
d

f

MOS

Proposed-nc

Proposed-c

Default-nc

Default-c

Fig. 23: Distribution of QoE of Proposed in congested and
non-congested situations

B. Effectiveness of congestion-aware bitrate selection

Second, to confirm the effectiveness of bitrate selection
depending on the stored network congestion information, we
further evaluated the most and least congested situations. We
analyzed one month of average throughput data for each
combination of CID and time slot and extracted the upper 10%
as non-congested and lower 10% as congested situations.

Figure 22 and 23 show the cdf of bitrate and QoE of
Proposed for both situations, respectively. In these figures, the
dataset gathered from Proposed in non-congested situations is
denoted as Proposed-nc, and that in the congested situations
is denoted as Proposed-c. In the same manner, in Fig. 23, the
dataset gathered from Default in non-congested situations is
denoted as Default-nc, and that in the congested situation is
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Fig. 24: Response time transition of QUVE server

denoted as Default-c.
Figure 22 shows that Proposed selected a higher bitrate

when the user was in the non-congested situation and selected
a lower bitrate when the user was in congested situation. These
results indicate that our framework selects the bitrate reflecting
the congestion situation. In addition, even in the congested
situation, Proposed selected bitrates higher than 500 kbps in
about 30% of viewings. This ratio was higher than that of
Default, as shown in Fig. 21. Figure 23 indicates Proposed
achieved higher QoE distribution in both congested and non-
congested situations than that of Default.

From these analyses, it is confirmed that Proposed did not
blindly select a higher bitrate, but rather selected the bitrate
that maximizes QoE considering the congestion. By taking
into account congestion, our framework achieved higher QoE
in both congested and non-congested situations.

C. Overhead

Third, we evaluated the overhead of QUVE.
Figure 24 shows the median and 99 percentile of the

response time series of the QUVE server for every 10 min.
We used the data of one day’s response timein the collected
data set.

This results illustrate that the QUVE server can process
almost all the requests within 200 msec and half the requests
within 20 msec. According to ITU-T Recommendation P.1201
[28], a startup delay of less than 4.29 sec does not affect
QoE. Therefore, the field trial also proved that the overhead by
introducing QUVE is small and ignorable from the perspective
of video-streaming QoE.

VII. RELATED STUDIES

A. Video-quality Maximization

We describe studies related to video-quality maximization.
In certain studies on ABR, forthcoming available throughput

was estimated on the basis of the traffic-receiving status of
the ongoing session and the video bitrate for chunks was
chosenahead accordingly [29] [30]．In another ABR study, the
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amount of received data in the playback buffer was used and
the forthcoming chunks’ receiving bitrate was selected [31].
These studies have a common issue in that the throughput or
buffer status could not be estimated before receiving video
traffic for a certain amount of time, so these studies cannot
be applied for selecting the initial receiving bitrate. Therefore,
many ABR-streaming method implementations start with the
lowest bitrate and gradually switch to better bitrates. Another
common issue with these implementations is that they can in-
volve bitrate fluctuation that may lead to user QoE degradation
[32].

Aquarema [14], [15] is a centralized QoE management
framework for video streaming service in the wireless mesh
network. With this framework, a network element manipulates
resource allocation corresponding to the client device request
to increase the QoE of application services. Rocket optimizer
[16] is also a centralized QoE management solution for
video streaming service. This solution selects an appropriate
encoding condition and applies it by transcoding the video
content. However, this framework is implementable only in a
managed network environment and not feasible in every end-
to-end path in the Internet.

B. QoE Estimation

We describe the current QoE-estimation model for CBR-
based video-streaming services.

A no-reference model that does not depend on information
of the original video is used for real-time QoE monitoring and
QoE calculation. The model estimates QoE on the basis of
network information, such as packet loss ratio and bandwidth,
and application characteristics, such as the encoding bitrate
and packetization scheme. It can be further classified as a
media layer model and packet-layer model depending on
the base information. Our complete QoE-estimation model
is classified as a packet layer model that uses packet header
information obtained in networks.

Packet layer models include Vq [17], CAPL [18], and
G.1071 [19] standardized by ITU-T. The Vq is a very straight-
forward model, in which bitrate-based quality is calculated
first. The final quality value is calculated using the bitrate-
based quality and packet-loss effect. The CAPL calculates
the frame quality from the temporal complexity estimated
using information such as P-frame and I-frame, and from the
bitrate value. The frame-quality and packet-loss information
are used for calculating the final quality value. The G.1071
derives the bitrate, framerate, and I-frame average bytes using
the packet-header information and estimates the encoding
quality of a video. Then, the number, average duration, and
average interval of rebuffering events are used to calculate
the degree of quality degradation. The QoE is calculated by
subtracting the quality degradation degree of rebuffering from
the encoding quality.

In G.1071, the QoE models are built for each resolution
condition individually. Hence, we cannot compare the QoE
between videos that have different resolutions. Another prob-
lem is that the standardized model is only applicable for very
short video content, such as 10 sec. We found a non-linear

relationship of QoE between Dur or rebuffering conditions,
so we could not use this model, for example, by calculating
the QoE of longer content using the average of the split
chunks’ QoEs. Therefore, we had to construct a new QoE-
estimation model to support a wider range of content duration
and resolution.

C. QoE Parameter Estimation
We describe studies on estimating required parameters to

calculate QoE. As in Sec. V, to calculate QoE, we have to
estimate RC and RT .

For estimating RT , Liu et al. [10] adopted an approach to
use the past quality information for cities. With this approach,
we need a sufficient amount of data for each player imple-
mentation and a buffer control algorithm. On the other hand,
our QoE parameter-estimation method can be applied to any
player implementation by only modifying the coefficients.

Methods related to network throughput estimation are di-
vided into active and passive measurement.

With active measurement methods, packets for measurement
are transmitted in a row. By manipulating the transmission
interval and packet size, the amount of measurement packet
traffic can be controlled for each time period. If the trans-
mitting traffic exceeds the available throughput, some of
the packets are buffered in the middle of the network, and
arriving packets are delayed. By using these characteristics, the
available network throughput can be estimated [33], [34]. With
these methods, the measurement time is necessary before the
data-packet transmission. This measurement period increases
the waiting time before video playback starts, which leads to
user dissatisfaction and them leaving the service [11], [35].

The passive measurement methods use in-service data traffic
to estimate future available throughput. Therefore, they cannot
usually use real or near-real time measurement data when start-
ing to use a network service. The network-quality-estimation
part of our method uses the past traffic data of different users.

VIII. CONCLUSION

We proposed QUVE, a framework for maximizing the user
QoE of video-streaming services. The framework consists
of two key components: a QoE-estimation model and QoE
parameter-estimation method. It recommends the best encod-
ing conditions depending on the time slot in a day and the user
location in the network. We demonstrated our framework in a
large-scale field trial for Niconico video service and confirmed
its effectiveness for QoE enhancement.

In the field trial, we applied QUVE to a CBR-based video-
streaming service. However, QUVE is also expected to be
effective for ABR-based video-streaming by recommending
not only the initial encoding condition but also the mid-stream
encoding conditions. Our future work is extending QUVE to
ABR-based services and demonstrating its effectiveness.
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