
SPECTRAL SMOOTHING FOR FREQUENCY-DOMAIN BLIND SOURCE SEPARATION
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ABSTRACT

This paper describes the circularity problem of frequency-
domain blind source separation (BSS), and presents a new
method for solving it. Frequency-domain BSS performs in-
dependent component analysis (ICA) in each frequency bin.
It is more efficient than time-domain BSS where ICA is ap-
plied to convolutive mixtures. However, frequency-domain
BSS has two problems. The first is the permutation prob-
lem, for which we have recently proposed a method. It
provides a robust and precise solution for the permutation
problem and reveals the influence of the second problem,
namely the circularity problem. Our solution for this sec-
ond problem is based on spectral smoothing by window-
ing. However, the direct application of windowing changes
the frequency responses for separation obtained by ICA and
causes an error. Therefore, we adjust the frequency responses
before windowing so that the error is minimized. The effec-
tiveness of the method is shown by experimental results for
the separation of up to four sources.

1. INTRODUCTION

We consider the problem of blind source separation (BSS)
for convolutive mixtures [1]. Suppose that N source sig-
nals sp(t) are mixed and observed at M sensors xq(t) =
∑N

p=1

∑
l hqp(l)sp(t − l), where hqp(l) represents the im-

pulse response from source p to sensor q. The goal is to sep-
arate the mixtures xq(t) and to obtain a filtered version of
a source sp(t) at each output yr(t). The separation system
typically consists of a set of FIR filters wrq(l) of length L

to produce separated signals yr(t) =
∑M

q=1

∑L−1
l=0 wrq(l)

xq(t− l). In a practical situation, separation should be per-
formed without knowing sp(t) or hqp(l). Independent com-
ponent analysis (ICA) [2] is one of the major statistical tools
for solving this problem. We can classify BSS methods into
two approaches based on how we apply ICA.

The first approach is time-domain BSS, where ICA is
applied directly to the convolutive mixture model. The ICA
algorithm correctly evaluates the independence of separated
signals yr(t). Thus, the approach achieves good separation
once the algorithm converges. However, if the algorithm
starts from a solution far from the final one, it takes many
iterations and much time to converge. This is because filter
coefficients wrq(l) depend on each other in the algorithm.

We need thousands of filter taps to separate acoustic signals
in a room. The approach is impractical for such cases unless
starting from a good initial solution.

The other approach is frequency-domain BSS, where
complex-valued ICA for an instantaneous mixture is applied
in each frequency bin [3–8]. The merit of this approach is
that the ICA algorithm can be performed separately at each
frequency, and the convergence of each ICA is fast. The dif-
ficulty lies in solving the permutation problem and the cir-
cularity problem. The permutation problem is well known
to be a difficult problem. Recently, we have proposed a
method [6] that provides a robust and precise solution and
also enables the separation of more than two sources. As
a consequence, the influence of the circularity problem is
highlighted. It deteriorates separation performance as ex-
plained in Sec. 3.

One well-known aspect of the circularity problem is that
a multiplication in the frequency domain corresponds to a
circular convolution in the time domain, which is different
from a linear one. A widely used technique for simulating
a linear convolution by frequency-domain multiplication in-
volves constraining frequency responses such that the cor-
responding time-domain filter contains enough consecutive
zeros at the end [9]. To maintain this constraint strictly in
BSS, the gradient of a filter in the ICA algorithm should also
be constrained to contain enough consecutive zeros. If this
constraint is followed in frequency-domain BSS, it becomes
a frequency-domain implementation of time-domain convo-
lutive ICA [10, 11], whose convergence is slow as in the
case of time-domain BSS. Some BSS methods interleave
this constraint with a frequency-domain ICA algorithm [7,
8]. With these methods, the constraint conflicts with the
ICA solution, and these two different operations should be
applied repeatedly until convergence. In both cases, the al-
gorithm moves back and forth between the two domains,
and loses the attractive characteristic of frequency-domain
BSS whereby ICA can be applied separately in each fre-
quency bin.

Our recognition of the circularity problem is more gen-
eral than the circular convolution problem. The circularity
problem arises from discrete frequency representation as ex-
plained in Sec. 3. Our technique for solving the problem in-
volves spectral smoothing by a window that tapers smoothly
to zero at each end, and forcing a filter to fit a specific length
L. The direct application of windowing, however, changes
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Fig. 1. Flow of frequency-domain BSS

the ICA solutions and causes an error. Therefore, we adjust
the ICA solutions within their scaling ambiguity before win-
dowing so that the error is minimized in the least-squares
sense. These techniques are explained in Sec. 4.

2. FREQUENCY-DOMAIN BSS

This section describes frequency-domain BSS where ICA
is applied separately in each frequency bin [3–6]. Figure 1
shows the flow. First, time-domain signals xq(t) are con-
verted into frequency-domain time-series signals Xq(f, t)
by short-time Fourier transform (STFT), where t is now
down-sampled with the distance of the frame shift. Then,
to obtain the frequency responses Wrq(f) of filters wrq(l),
complex-valued ICA Y(f, t) = W(f)X(f, t) is solved,
where X(f, t) = [X1(f, t), . . . , XM (f, t)]T , Y(f, t) =
[Y1(f, t), . . . , YN (f, t)]T , and W(f) is a separation matrix
whose elements are Wrq(f). Note that any ICA algorithm
can be used in this scheme. The ICA solution in each fre-
quency has scaling and permutation ambiguity. We perform
permutation alignment W(f) ← P(f)W(f), where P(f)
is a permutation matrix obtained by the method [6]. The
scaling ambiguity is solved by the minimal distortion prin-
ciple, W(f) ← diag(W(f)−1)W(f), to make Yr(f, t) as
close to Xr(f, t) as possible [4, 12]. Then, we solve the
circularity problem by spectral smoothing as described in
Sec. 4. Finally, separation filters wrq(l) are obtained by ap-
plying inverse DFT to Wrq(f).

3. THE CIRCULARITY PROBLEM

The frequency-domain BSS described in the previous sec-
tion is influenced by the circularity of the discrete frequency
representation. The circularity refers to the fact that fre-
quency responses sampled at L points with an interval fs/L
(fs: sampling frequency) represent a time-domain signal
whose period is L/fs. Figure 2 shows two time-domain fil-
ters. The upper one is a periodical infinite-length filter rep-
resented by frequency responses Wrq(f) calculated by ICA
at L points. Since this filter is unrealistic, we usually use the
one-period realization of the filter shown in the lower part.

However, one-period filters may cause a problem. Fig-
ure 3 shows impulse responses from a source sp(t) to a sep-
arated signal yr(t): urp(l)=

∑M
q=1

∑L−1
τ=0 wrq(τ)hqp(l−τ).

Those on the left u11(l) correspond to the extraction of a
target signal, and those on the right u13(l) correspond to the
suppression of an interference signal. The upper responses

1000 2000 3000 4000 5000 6000

−2

−1

0

1

A
m

pl
itu

de

1000 2000 3000 4000 5000 6000

−2

−1

0

1

A
m

pl
itu

de

Time (sample)

Fig. 2. Periodical time-domain filter represented by fre-
quency responses sampled at L = 2048 points (above) and
its one-period realization (below).
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Fig. 3. Impulse responses urp(l) obtained by the periodical
filter (above) and by the finite-length filter (below).

are obtained by the infinite-length filters, and the lower ones
are by the one-period filters. We see that the one-period fil-
ters create spikes, which distort a target signal and degrade
the separation performance. Since these spikes does not
exist in the infinite-length case, both adjacent periods are
needed to eliminate a spike. Here, we consider two reasons
for these spikes. One is that the frequency responses are un-
dersampled and the corresponding time domain filter has an
overlap with another period. This problem does not occur
if the required filter length is less than L. The other rea-
son is that adjacent periods work together to perform some
filtering even if the first problem is solved. The effect of
the second problem can be mitigated if the amplitude of the
filter coefficients around both ends is small.

The ICA algorithm in the frequency domain does not
know the length L of the time-domain filters, and ICA solu-
tions in various frequency bins might require the length of
the time-domain filter to be longer than L and generally infi-
nite. Therefore, we need to control the frequency responses
so that the corresponding time-domain filter fits length L
and has small amplitude around the ends.



4. SPECTRAL SMOOTHING

4.1. By Windowing

We propose a method for changing the frequency responses
to meet the requirement considered in the previous section.
The basic idea is spectral smoothing by windowing. We
apply a window g(l) to a filter wrq(l) to obtain a new fil-
ter wrq(l) · g(l). To ensure that the new filter have small
amplitude around both ends, we use a window that tapers
smoothly to zero at each end, such as a Hanning window
g(l) = 1

2 (1 + cos 2πl
L ). By this operation, frequency re-

sponses W(f) obtained by ICA are smoothed as W(f)←
∑fs−∆f

φ=0 G(φ)W(f−φ), where G(f) is the frequency re-
sponse of g(l) and ∆f = fs/L. If a Hanning window is
used, the frequency responses are smoothed as

W(f)← [W(f−∆f) + 2W(f) + W(f +∆f)]/4
since the frequency responses G(f) of a Hanning window
are G(0) = 1/2, G(∆f) = G(fs−∆f) = 1/4, and zero
for the other frequency bins.

Although the windowing eliminates the spikes, it changes
the frequency response obtained by ICA and causes an error.
The error can be calculated for each row wr(f) = [Wr1(f),
. . . , WrM(f)] of W(f). Let br(f) be the smoothed fre-
quency responses, and αr be a complex-valued scalar rep-
resenting the scaling ambiguity of the ICA solution. The
error is er(f) = minαr [br(f) − αrwr(f)], and its least-
squares solution is

er(f) = br(f)− br(f)wr(f)H

||wr(f)||2 wr(f).

If we use a Hanning window, the smoothed frequency re-
sponse is br(f) = [wr(f−∆f)+2wr(f)+wr(f +∆f)]/4.
Thus, the error can be represented as

er(f) = [c−r (f) + c+
r (f)] / 4, where

c−r (f) = wr(f−∆f)− wr(f−∆f)wr(f)H

||wr(f)||2 wr(f),

c+
r (f) = wr(f +∆f)− wr(f +∆f)wr(f)H

||wr(f)||2 wr(f).

This c−r (or c+
r ) represents the difference of two vectors

wr(f) and wr(f−∆f) (or wr(f +∆f)). These differences
are usually not very large, therefore the error does not seri-
ously affect the separation.

4.2. Pre-scaling

Even if the error caused by the windowing is not very large,
we can improve the separation by minimizing the error. We
minimize the error by adjusting the scaling of the ICA so-
lution before windowing. Let dr(f) be a complex-valued
scalar and vr(f) = dr(f)wr(f) be a new row vector of a
separation matrix. We want to find dr(f) such that the error

er(f) = br(f)− br(f)vr(f)H

||vr(f)||2 vr(f)

is minimized, where br(f) is the smoothed frequency re-
sponses. A scalar dr(f) should be close to 1 to avoid any
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Fig. 4. Experimental conditions

great change in the predetermined scaling. Thus, the total
cost to be minimized is J =

∑
f Jr(f), where

Jr(f) = ||er(f)||2 / ||wr(f)||2 + β|dr(f)− 1|2,
and β is a parameter indicating the importance of maintain-
ing the predetermined scaling. The minimization can be
performed iteratively by dr(f) = dr(f) − µ ∂J

∂dr(f) with a
small step-size µ. If a Hanning window is used, the smoothed
frequency responses are

br(f) = [vr(f−∆f) + 2vr(f) + vr(f +∆f)] / 4,

and the error can be represented as

er(f) = [dr(f−∆f)c−r (f) + dr(f +∆f)c+
r (f)] / 4.

using previously defined c−
r and c+

r . Thus, the gradient is
∂J

∂dr(f)
=

∂Jr(f−∆f)
∂dr(f)

+
∂Jr(f +∆f)

∂dr(f)
+

∂Jr(f)
∂dr(f)

= [er(f−∆f)c+
r (f−∆f)H +

er(f +∆f)c−r (f +∆f)H ] / (8 · ||wr(f)||2)
+2β(dr(f)− 1).

5. EXPERIMENTAL RESULTS

We performed experiments under the conditions shown in
Fig. 4. As the ICA algorithm, we used FastICA [2] followed
by Infomax + Natural gradient [1] with 50 loops to improve
the performance. Table 1 summarizes the separation results.
To show the effectiveness of the proposed method, we com-
pare cases where the spectral smoothing was applied differ-
ently: no smoothing (“no”), simply multiplying a Hanning
window (“win”) and pre-scaling before multiplying a Han-
ning window (“pre + win”). In the “pre + win” case, we
tested two different values for β.

We evaluated the separation using signal-to-interference
ratio (SIR) and signal-to-distortion ratio (SDR). SIR is cal-
culated by the ratio of the power of a target component
urr(l) and an interference component

∑
p�=r urp(l). To cal-

culate SDR, we decompose the target component urr(l) into
a scaled version of a reference and a distortion er(t). We
selected hrr(l) as the reference following the minimal dis-
tortion principle [12]. Thus, the target component is de-
composed as urr(l) = αr ·hrr(t) + er(t), where αr is a



Table 1. Experimental results
#sources / position 2 / a b 3 / a b d 4 / a b c d

smoothing no win pre + win no win pre + win no win pre + win
β 0.1 0.01 0.1 0.01 0.1 0.01

SIR (dB) 20.6 21.6 21.8 22.1 13.4 17.2 17.8 19.1 11.8 15.6 17.0 19.0
SDR (dB) 20.5 21.1 20.8 19.6 14.9 17.0 17.6 17.0 15.1 17.9 15.8 12.2

Execution time (s) 9.7 9.7 9.8 10.1 17.9 18.0 18.2 18.7 27.0 27.0 27.3 27.9
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Fig. 5. Separation filters w11(l)
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Fig. 6. Impulse responses urp(l) obtained by filters, one of
which is shown in “smoothing (win)” in Fig. 5.

real-valued scalar to make the distortion er(t) minimum.
Finally, SDR is calculated by the ratio of the power of αr ·
hrr(t) and er(t).

We found that spectral smoothing improved the SIR in
all cases. With spectral smoothing, both ends of a separa-
tion filter converge to zero as shown in Fig. 5. This elimi-
nates the spikes caused by the circularity as shown in Fig. 6.
However, spectral smoothing alone changes the ICA solu-
tions and causes an error. The pre-scaling minimizes the er-
ror and improves SIR further. If we use a smaller β, a better
SIR is obtained at the cost of a worse SDR. An appropriate
β can be chosen to balance SIR and SDR.

6. CONCLUSION

We have observed the circularity problem, and have pro-
posed a method for solving the problem based on spectral
smoothing. This method provides good separation in com-
bination with our previously reported solution to the permu-
tation problem [6]. We have succeeded in separating many
sources with a practical execution time. The experiments
shown here were for up to four sources with linearly ar-
ranged sensors. We have also separated six sources with a
planar array of eight sensors [13].
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