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The Kondo effect associated with state degeneracy is studied for a two-dimensional harmonic quantum
dot. State degeneracies between a spin singlet and triplet states, between two spin doublet states, and
between a spin doublet and quadruplet states are induced by magnetic field. For the first two degenracies,
strong enhancement of the Kondo effect is observed. The estimated Kondo temperature for the ‘‘doublet–
doublet’’ degeneracy with an odd electron number is similar to that for the ‘‘singlet–triplet’’ degeneracy
with an even electron number, indicating that a total of four-fold spin and orbital degeneracy for both
cases accounts for the similar enhancement of the Kondo temperature. The Kondo effect generally gives
rise to enhanced conductnace and a zero-bias peak of differential conductance in the Coulomb valley. In
contrast, enhacned conductance but a zero-bias dip is observed for the third ‘‘doublet–quadruplet’’
degeneracy. This can be due to Zeeman splitting but no clear interpretation is reached yet.
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1. Introduction

Since the concept of the Kondo effect was established in
1964 by Professor Kondo,1) a number of experimental and
theoretical studies have been performed on various kinds of
bulk metals to explore the many-body effects in the
condensed matter physics. The interest in the Kondo effect
was renewed when the Kondo effect was observed in 1998
for semiconductor quantum dot devices.2) These devices
have enabled studies on the Kondo effect associated with a
single isolated magnetic impurity or a spin-half electron
trapped in a quantum dot, instead of a large ensemble of
magnetic impurities in bulk metal. In addition, various
parameters that influence the many-body effects are handled
in a controlled manner in quantum dot devices. These
advantages of quantum dots have opened up new approaches
to the Kondo physics, resulting in a number of novel findings.

The Kondo effect in quantum dots arises from the singlet
coupling between a localized electron spin in a dot and
Fermi seas of the tunnel-coupled contact leads.3) Figure 1(a)
shows an energy diagram of such a quantum dot having one
spin-up electron at the uppermost level whose energy is "0.
The total spin S ¼ 1=2 for this dot. The coupling of the
electron spin to Fermi seas in the contact leads has tunnel
rates, �L and �R, for the left and right barriers, respectively.
"0 is adjusted so that "0 < EF < "0 þ U, where EF is the
Fermi energy and U is the charging energy. Then, the first-
order tunneling through the dot is inhibited because of U

(Coulomb blockade). However, when the temperature is
lowered to �TK (Kondo temperature), the electron in the dot
forms a singlet coupling with a spin-down electron in the
lead, and concurrent tunneling of these two electrons
contributes to a net electron transfer between the source
and drain leads as depicted in Fig. 1(a). At the same time, a
Kondo resonance peak appears in the local density of states

(DOS) at the Fermi energy. Therefore, the conductance
starts to increase at T � TK. This behaviour is qualitatively
opposite to that in bulk metal because the current path is
only through the ‘‘magnetic impurity’’ in the case of the
quantum dot. The Kondo temperature, TK, is given as

TK ¼
ffiffiffiffiffiffiffi
�U

p

2
exp½��ðEF � "0ÞðU � EF þ "0Þ=�U�; ð1Þ

where � ¼ �L þ �R. The above second order tunneling
occurs coherently and tends to screen the initial localized
magnetic moment in the dot through the dot-lead spin singlet
formation. Figure 1(b) shows the Kondo effect theoretically
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Fig. 1. (a) Schematic energy diagram of a quantum dot coupled with the

source and drain leads via tunnel barriers. The dot has spin S ¼ 1=2 when

an uppermost level has an unpaired electron. The Kondo effect enhances

the conductance through higher order tunneling of anti-ferromagnetically

correlated spin pairs at T < TK. (b) Coulomb blockade oscillations for

T � TK (dashed line) and for T < TK (solid line). The conductance of

only the odd N valleys increase due to the Kondo effect.
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predicted for Coulomb oscillations in a quantum dot.4)

Regular Coulomb oscillations, which appear at temperature
> TK, are significantly modified as the temperature becomes
comparable to or lower than TK. In the region of the
conductance valley (Coulomb valley), the number of
electrons, N, in the dot is fixed to an integer. However, the
valley conductance for odd N with S ¼ 1=2 increases and
finally reaches the unitary limit (linear conductance = 2e2=h
when �L ¼ �R).

4,5)This is not the case for the valley holding
even N with S ¼ 0. In most of quantum dots, however, TK is
too low to visualize the Kondo effect in the experimentally
available temperature range (T > 10mK). So the Kondo
effect is only observed in a quantum dot having a smaller
size and stronger couplings to the leads, i.e., larger U and �

values.2) Another way to raise the Kondo temperature is to
increase the number of states involved in such virtual
tunneling processes that build up the Kondo many-body
state.6–8) In quantum dots, the electronic states can be varied
as a function of N and magnetic field, B. This allows us to
tune the degeneracy of many-body states contributing to the
Kondo effect. We previously observed a strong enhancement
of the Kondo effect for degeneracy of two-electron states
between a spin singlet and triplet states.9) In this work, we
use a vertical quantum dot to study the Kondo effect. The
number of electrons, N, in this dot is precisely varied as a
function of plunger gate voltage, starting from zero. In
addition, the lateral confining potential is well approximated
by a two-dimensional (2D) harmonic function so that the
electronic configuration can be well analyzed.10) We control
over the spin configuration in the few electron regime as a
function of gate voltage and magnetic field.11) We find
strong enhancement of the Kondo effect induced by
degeneracy between a spin singlet and a triplet states (‘‘S–
T Kondo effect’’) and between two spin doublet states (‘‘D–
D Kondo effect’’).12) We compare the features of the Kondo
effect between these two cases.

2. Tunable State Degeneracy and Spin Configuration

Electronic states in quantum dots are determined to
minimize the total energy or sum of the quantum mechanical
energy and interaction energy. The spin state, thus deter-
mined, usually takes a total spin, S ¼ 0 when N is even, and
S ¼ 1=2 when N is odd. S can be greater than 1=2 when the
spin-related interaction is strong. We have previously
studied the filling of a vertical quantum dot, and found that
the electronic configuration is significantly modified for the
filling of nearly degenerate orbital states. The orbital
degeneracy can be adjusted as a function of magnetic
field B. This allows us to investigate the Kondo effect for
tunable electronic configurations.

Here we assume two orbital states crossing with each
other at a magnetic field of B ¼ B0. By taking into account
spin degeneracy, these orbital states are consecutively filled
by four electrons in total. If these are the electrons from the
(N þ 1)th to the (N þ 4)th for filling the dot, the corre-
sponding electrochemical potentials are defined as �ðN þ 1Þ,
�ðN þ 2Þ, �ðN þ 3Þ and �ðN þ 4Þ, respectively, and they
are schematically shown in Fig. 2(a). The electrochemical
potential �ðNÞ is defined as �ðNÞ ¼ UðNÞ � UðN � 1Þ,
where UðNÞ is the total energy for a quantum dot holding
N electrons. �ðN þ 1Þ just traces the orbital state with the

lower energy. If we assume N is even, this ground state (GS)
is a spin doublet having S ¼ 1=2. The N þ 2 electron GS
with �ðN þ 2Þ is a spin singlet state (S ¼ 0) having two anti-
parallel spins in a single orbital state for B far away from B0.
However, close to the point of B ¼ B0, the GS is a spin
triplet state (S ¼ 1) having parallel spins in two different
orbital states, following Hund’s rule.10,11) The triplet GS is
signified by a downward cusp both ended by an upward
cusp, indicating a singlet–triplet transition. Here, we neglect
the Zeeman energy. The N þ 3 electron GS with �ðN þ 3Þ is
a spin half state (S ¼ 1=2) having a filled spin-degenerate
orbital state, and the N þ 4 electron GS with �ðN þ 4Þ is
formed by filling all of the available states. Note the two
dash-dotted lines in Fig. 2(a) show degeneracy of two
doublet states for the N þ 1 and N þ 3 GSs, and the two
dotted lines show degeneracy of a singlet and triplet states
for the N þ 2 GS. We focus on all of these degenerate points
in the experiment on the Kondo effect as described later.

Our model of electrochemical potentials is so simple,
however, it reproduces well an experiment on a circular 2D
quantum dot.11) Figure 3 shows the experimental data of
Coulomb peaks evolving with magnetic field between N ¼ 0

and 14. The device used for this experiment is a 0.5 mm
diameter circular mesa of a 7.5 nm Al0:22Ga0:78As/12 nm
In0:05Ga0:95As/9.0 nm Al0:22Ga0:78As double barrier struc-
ture (DBS). A source and drain contacts are located below
and above the DBS, respectively, and a gate electrode is
placed on the side of the mesa (see inset to Fig. 4). A 2D
harmonic dot is located between the two AlGaAs barriers.
The device is mounted in a dilution refrigerator with a base
temperature of 50mK, and a vertically flowing current in
response to a dc excitation voltage, Vsd, of 120 mV is
measured as a function of gate voltage. Then a series of
current peaks, i.e., Coulomb peaks, appear corresponding to
a one-by-one change in the electron number N in the dot.
Note this quantum dot is so weakly coupled to the contact
leads that the Kondo effect is not observed as described
before. The position of a Coulomb peak for the transition
from N � 1 to N measures the electrochemical potential
�ðNÞ. We see large peak spacings for N ¼ 2 and 6 at B ¼ 0

due to the shell filling and also for N ¼ 4 due to Hund’s rule,

S
P
E
C
IA
L
T
O
P
IC
S

(a)

4

3

2

1

E
n,

l (
m

eV
)

1.51.00.50.0
B (T)

(0,-1)

(0,1)

(0,0)

(0,7)

(b)

N(even)

N+4

µ(N+1)

µ(N+2)

µ(N+3)

µ(N+4)

B

E
le

ct
ro

ch
em

ic
al

 p
ot

en
tia

l

S=0

S=0 S=1 S=0

S=1/2

S=1/2

S=0

ω
0
=1meV

Fig. 2. (a) Schematic magnetic field dependence of the electrochemical

potential for electron numbers from N þ 1 (odd) to N þ 4 (even)

occupying two crossing orbitals. A triplet state (S ¼ 1) appears around the

level crossing field at N þ 2. (b) Fock–Darwin states calculated with

h�!0 ¼ 1meV. The circle denotes crossing between orbital state ðn; lÞ ¼
ð0;�1Þ (dotted line) and ð0; 7Þ (thick solid line) where the Kondo effect

for N ¼ 15 and 16 are studied in detail.
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and evolution of neighboring peaks in pairs with magnetic
field due to consecutive anti-parallel spin filling of a single
orbital state.

The eigenstates confined by a 2D harmonic potential in
the presence of a magnetic field perpendicular to the 2D
plane of the dot are the Fock–Darwin (FD) states with
energies En;l.

13) En;l is shown in Fig. 2(b);

En;l ¼ �
l

2
h�!c þ nþ

1

2
þ

1

2
jlj

� �
h�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4!2

0 þ !2
c

q
; ð2Þ

where n ¼ 0; 1; 2; . . . is the radial quantum number and l ¼
0;�1;�2; . . . is the angular quantum number. h�!0 is the
lateral confinement energy and h�!c ¼ eB=m�. Zeeman
splitting is neglected, so each state is two-fold degenerate.
The evolutions of the paired lines in Fig. 3 are well
reproduced by the FD diagram. Note crossing of the FD
states, or orbital and spin degeneracy, is lifted by the
interaction effect in Fig. 3. So the wiggles or anti-crossings
between pairs of peaks correspond to the crossings of FD
states. Modifications to the simple pairing of peaks are
observed in each dashed oval connecting pairs of peaks
along the dashed line at non-zero field. This oval indicates
the four-electron filling at the crossing of two FD states, and
the four peak lines inside the oval are well reproduced by our
electrochemical potential model of Fig. 2(a).

3. The Kondo Effect Enhanced by State Degeneracy

We use a technique of manipulating S–T and D–D
degeneracies described in the preceding section to study the
Kondo effect in our quantum dot device. Here we also use a
vertical quantum dot but having a much stronger coupling
between the dot and contact leads. The tunnel barriers are
made from two 7-nm-thick Al0:06Ga0:94As. The built-in dot-
lead coupling � via the AlGaAs barriers for this dot device is
400 meV for the first electron entering the dot, and gradually
increases as N increases. As described before, the values of S
and N can be unambiguously determined in this quantum
dot. All the transport measurements were performed in a
dilution refrigerator with a base temperature of ’60mK,
using a standard lock-in technique with an ac excitation
voltage between source and drain of 3 mV. This excitation
voltage is much smaller than kBTK.

Figure 4 shows a gray-scale plot of the linear conduct-
ance, G, as a function of Vg and B at the base temperature.
White stripes indicate Coulomb peaks between N ¼ 0 and
21. The overall features observed here such as shell filling
and spin pairing are consistent with those in Fig. 3. The
magnetic evolutions of the peak pairs are assigned to
successive filling of FD states13) by spin-up and -down
electrons.

On the other hand, marked difference from Fig. 3 is
observed for Vg > �1:0V. We see many white vertical lines
connecting neighboring Coulomb peaks in the regions where
pairs of peaks become close to each other. These vertical
lines indicate lifting of Coulomb blockade due to the Kondo
effect. There are more such lines as Vg increases, because in

Fig. 3. Evolution of current peaks for N ¼ 1 to 14 with magnetic field

measured for Vsd ¼ 120mV. The dotted line indicates the magnetic field

of the filling factor � ¼ 2. Dotted ovals indicate the regions where two

crossing Fock–Darwin states are consecutively filled by four electrons.

The four peak lines to the top in each oval correspond to electrochemical

potentials of �ðN þ 1Þ to �ðN þ 4Þ, respectively.
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our quantum dot device, � gradually increases with
increasing Vg.

Figure 5 shows detailed measurement conducted in region
A marked in Fig. 4. The last orbital crossings occur between
En;l states with ðn; lÞ ¼ ð0;�1Þ and ð0; lÞ (l > 1) on the dotted
line, and all the electrons occupy the ground Landau level at
higher B (� ¼ 2). A spin triplet state is observed at N ¼ 16

and B ’ 1:2T, where states ðn; lÞ ¼ ð0;�1Þ and ð0; 7Þ are
occupied by electrons having parallel spins [see the circle in
Fig. 2(b)]. When we compare the white lines in Fig. 5 with
the electrochemical potentials vs B in Fig. 2(a), we find that
the white vertical lines in Fig. 5 fall onto the dotted and
dash-dotted lines in Fig. 2(a). For example, in the N ¼ 16

Coulomb valley, the conductance is enhanced at B ’ 1:1T
and B ’ 1:3T corresponding to the dotted lines in Fig. 2(a)
where the singlet and triplet GS are degenerate. These are
both assigned to the S–T Kondo effect. The Kondo temper-
ature, TS{T

K , is considerably higher than the conventional S ¼
1=2 Kondo temperature, TD

K , because of the larger degen-
eracy.9) As for N ¼ 15 and 17, the conventional S ¼ 1=2
Kondo effect is expected. However, the conductance
enhancement in the Coulomb valleys is not clearly observed
except in the regions corresponding to the dash-dotted lines
in Fig. 2(a), where two S ¼ 1=2 states with different total
angular momentum, M, are degenerate. When such an
orbital degeneracy is present for odd N, a total of four states,
i.e., M ¼ M1, M2 (M1 6¼ M2), SZ ¼ �1=2, are involved in
forming the Kondo singlet state if the Zeeman splitting is
negligible. Then, an enhancement of TK is expected
reflecting this four-fold degeneracy as in the S–T Kondo
effect. We refer this type of Kondo effect for odd N to
‘‘doublet–doublet’’ (D–D) Kondo effect.12) Because TD

K is
much lower than the D–D Kondo temperature, TD{D

K , only a
slight conductance enhancement is observed in the odd N

Coulomb valleys when there is no orbital degeneracy. Since
many orbital crossings occur before the system enters the
� ¼ 2 regime, a honeycomb pattern is formed in a B–N
diagram by the high conductance region, provided TD

K <
T < TS{T

K , TD{D
K . Such honeycomb pattern is clearly captured

in Fig. 5, due to the S–T and D–D Kondo effects that occur

consecutively for different orbital crossings.
Our honeycomb pattern is different from ‘‘chessboard

pattern’’ discussed in a lateral quantum dot.14–17) In a vertical
quantum dot, one can assume that the orbital quantum
numbers are conserved in tunnel processes between the dot
and leads due to their same rotational symmetry. Hence we
expect ‘‘two channels’’ of conduction electrons in the leads
when two orbitals are relevant in the quantum dot; each
channel couples to only one of the two orbitals. On the other
hand, a ‘‘single channel’’ in the leads preferentially couples
to the outer orbital in the case of a lateral quantum dot. Then,
high-conductance Coulomb valleys appear alternately in B–
N diagram due to the Kondo effect involving electrons in the
outer orbital.

Figures 6(a) and 6(b) show temperature dependence of the
differential conductance dI=dVsd vs Vsd for the S–T (N ¼ 16)
and D–D (N ¼ 15) Kondo effect, respectively. The gate
voltage is fixed in the center of the respective Coulomb
valley (solid and open triangle in Fig. 5). A clear Kondo
peak at Vsd ¼ 0V is observed at low temperatures, whose
height decreases with increasing temperature as expected for
the Kondo effect.

After a background subtraction of non-Kondo cotunneling
component,18) the above temperature dependence of the
Kondo peak height is fitted to the function

G

G0

¼
T 0
K
2

T2 þ T 0
K
2

( )s

; ð3Þ

where G0 is the low temperature limit conductance and T 0
K =

TK=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21=s � 1

p
.19,20) G0 does not reach the unitary limit

conductance of 2e2=h5) probably because of the asymmetry
in the two tunnel barriers; it is impossible to tune � to the
upper and lower leads separately in our vertical quantum dot
because � is pre-determined by the growth parameter of the
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material. The TS{T
K and TD{D

K estimated from the curve fitting
are 700mK and 490mK, respectively. The higher TK for the
S–T Kondo effect may be due to the larger �, and it is
difficult to experimentally determine which is larger, TS{T

K or
TD{D
K , for the same �. The fitted values of the parameter s are

0.8 for the S–T Kondo effect and 1.1 for the D–D Kondo
effect, much larger than s ’ 0:2 for a conventional spin 1=2
system. However, the estimation of s is less reliable because
it changes substantially with the chosen fitting range. The
expected Zeeman splitting of ’30 meV at B ’ 1:2T is
smaller than TK estimated above. Therefore, a Zeeman
splitting in the dI=dVsd Kondo peak is not resolved, and we
are allowed to treat all four S–T and D–D states as quasi-
degenerate.

Figures 7(a) and 7(b) show a gray-scale plot of dI=dVsd in
B–Vsd plane for the S–T Kondo effect (N ¼ 16) and for the
D–D Kondo effect (N ¼ 15), respectively, with Vg fixed in
the center of the respective Coulomb valley. Conductance
peaks at Vsd ¼ 0V are observed near the degeneracy field,

B0 (B0 ¼ 1:255T for D–D, 1.12 and 1.25 T for S–T). The
two zero-bias S–T Kondo peaks in Fig. 7(a) correspond to
the two conductance maxima in the N ¼ 16 Coulomb valley
(see Fig. 5). Because the S–T or D–D degeneracy is lifted as
j�Bj ¼ jB� B0j increases, the Kondo effect is broken and
the zero-bias peak is suppressed. At large j�Bj, a peak or
step is observed at eVsd ¼ �� where the brightness
suddenly changes. Here, � is the B-dependent energy
difference between the singlet and triplet states, or between
the two doublet states. This peak/step is due to cotunneling
associated with the two states separated by �,9) and
therefore observed within the Coulomb valley (’ 0:6meV).

Figure 8(a) shows Vsd values of the conductance peak/
step as a function of �B. Peak/step positions for both the S–
T (B0 ¼ 1:12T) and the D–D (B0 ¼ 1:25T) Kondo effect
almost coincide, indicating that they involve the same orbital
states, namely ðn; lÞ ¼ ð0;�1Þ and ð0; 7Þ.

Figure 8(b) compares the relative conductance, �G,
measured from the degeneracy (�B ¼ 0) at Vsd ¼ 0V, as
a function of �B. The scaling calculation8,21) has shown that,
in the S–T Kondo effect, TKð�Þ obeys a power law TKð�Þ ¼
TKð0Þ � ðTKð0Þ=�Þ� with � ¼ 2þ

ffiffiffi
5

p
on the triplet side,

whereas TKð�Þ drops to zero suddenly on the singlet side.
The observed S–T Kondo peak conductance drops more
quickly on the singlet side (�B < 0) than on the triplet side
(�B > 0) reflecting the asymmetric behavior of TK given by
the scaling calculation.

Another scaling calculation was recently applied to the D–
D Kondo effect,12,22) and � ¼ 1 was obtained in the case of
an equivalent dot-lead coupling for the two orbitals
involved. The observed D–D Kondo peak conductance
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drops more slowly and symmetrically compared to the S–T
Kondo case, i.e., TD{D

K is more robust against degeneracy
lifting than TS{T

K , in qualitative agreement with the theory.
Please note that, in Fig. 5, the width of the enhanced
conductance region, or a ‘‘bridge’’ between the Coulomb
peaks, is consistently larger for the D–D Kondo effect [the
dot-dashed line in Fig. 2(a)] than for the S–T Kondo effect
[the dotted line in Fig. 2(a)] at other N as well.

When all the electrons occupy the ground Landau level
(� ¼ 2), the spin state is doublet (singlet) for odd (even) N.
The system then enters a spin flip region (‘‘B’’ in Fig. 4)
when B further increases, and finally reaches a totally spin
polarized state (� ¼ 1), or maximum density droplet
(MDD).23) The first spin-flip transition occurs at B ’ 2:0T
from S ¼ 0 to 1 for even N, and from S ¼ 1=2 to 3=2
(quadruplet) for odd N within region B. This spin transition
in the GS is clearly signaled by the kink in the Coulomb
peak evolution with B as well as by the Kondo effect; the S–
T Kondo effect is observed for even N as the enhanced
conductance in the Coulomb valley suggests. A similar
conductance enhancement is observed in the Coulomb
valley for the doublet–quadruplet (D–Q) degeneracy with
odd N, suggesting a D–Q Kondo effect. However, a zero-
bias peak is not observed in the differential conductance
characteristic shown in Fig. 6(c). On the contrary, a zero-
bias ‘‘dip’’ develops at low temperatures. In this particular
case of D–Q degeneracy at N ¼ 23, the transition occurs
from a doublet state where ðn; lÞ ¼ ð0; 11Þ state is occupied
by an unpaired electron, to a quadruplet state where ðn; lÞ ¼
ð0; 10Þ, ð0; 11Þ and ð0; 12Þ states are each occupied by an
unpaired electron. Figure 7(c) shows the B-dependence of
the differential conductance characteristic, where the D–Q
degeneracy occurs at B ¼ 1:91T and N ¼ 21. Temperature
dependence of the differential conductance characteristic
similar to Fig. 6(c) is observed for this electron number as
well, although the overall feature is more asymmetric.
Unlike the two-stage Kondo effect reported in a lateral
quantum dot,24) no peak is found at Vsd ¼ 0V even when B

is scanned across the transition point, and the D–Q
degeneracy remains as a saddle point in the B–Vsd diagram.
The peaks in the differential conductance in Fig. 6(c)
roughly corresponds to three times the Zeeman splitting at
this magnetic field. Although the peaks may be related to the
Zeeman splitting between SZ ¼ 3=2 and �3=2 states, we
have no clear explanation as yet for the above observed
features.

4. Conclusion

In conclusion, we have observed a strong Kondo effect in
a two-dimensional harmonic quantum dot when a magnetic
field induces state degeneracies between a spin singlet and
triplet states and between two spin doublet states. The
estimated Kondo temperature is comparable between the
two kinds of degeneracies but much higher than that for a
standard spin-half Kondo effect, indicating that a total of
four-fold spin and orbital degeneracy for both cases accounts
for the similar enhancement of the Kondo temperature. In
addition, for degeneracy between a spin doublet and
quadruplet states, we have observed enhanced conductance
in the Coulomb valley but a zero bias dip. This can be due to
the Zeeman splitting, but the physics is not yet clear.
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