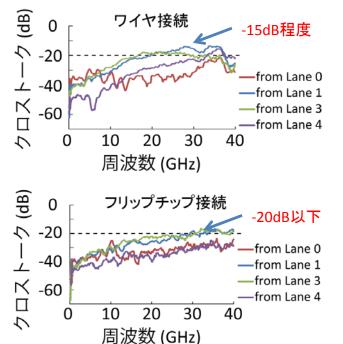
フリップチップ接続EADFBレーザアレイモジュールの50Gb/s×8Ch動作

~次世代超高速光通信網実現のための光通信部品研究~

Motivation どんな問題に取り組むのか?

Originality and Impact 新規性とインバクトは?


データトラフィックの急激な増大に対応すべく、400Gb/s級の小型光送信器が求められています。そのためにはレーザアレイチップに50Gb/sの高速信号を8チャネル分、信号劣化なく配線する技術が必要となります。しかし、従来技術ではチャネル間のクロストークによる信号波形劣化が課題でした。

従来のワイヤ接続技術より、クロストークが小さく、広帯域化が可能なフリップチップ接続技術をレーザアレイモジュールに適用しました。これにより、ワイヤ接続と比較して十分にクロストークを低減可能となり、50Gb/s,8チャネル同時動作を実現するとともに、400Gb/s、10km伝送が可能となりました。

EADFBレーザアレイチップと配線構造

0.6 mm EAM LD MPD フリップチップ接続 従来型ワイヤ接続 拡大図 L部信号線 下部信号線 信号線 RFビア Lane 0 RF 配線板 サブキャリア EA 変調器 EADFB レーザアレイ / Lane 7 金バンプ

Lane 2のクロストーク特性

400Gb/s、10km伝送後のアイパターン

50Gb/s NRZ, 信号振幅2.3Vpp

	8 チャネル同時動作	1 チャネル独立動作
Lane 0	ER: 6.9 dB	ER: 6.9 dB
Lane 1	ER: 6.6 dB	ER: 6.6 dB
Lane 2	ER: 6.2 dB	ER: 6.2 dB
Lane 3	ER: 6.2 dB	ER: 6.2 dB
Lane 4	ER: 5.6 dB	ER: 5.6 dB
Lane 5	ER: 5.5 dB	ER: 5.5 dB
Lane 6	ER: 5.2 dB	ER: 5.2 dB
Lane 7	ER: 4.9 dB	ER: 4.9 dB

