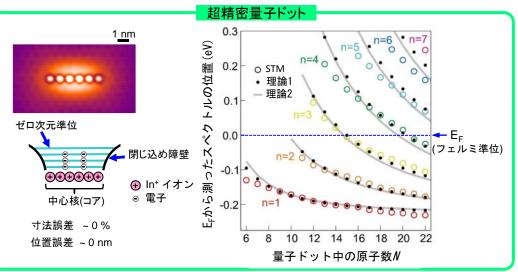
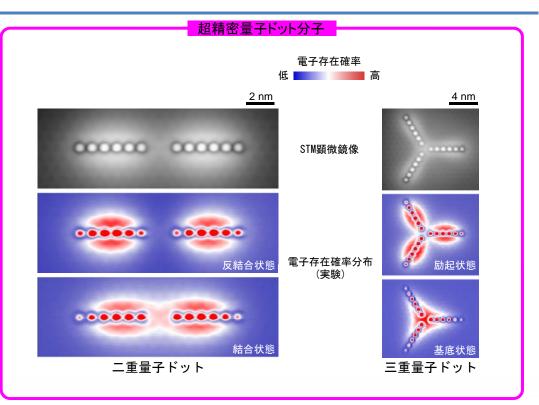
原子1個の誤差も無い半導体量子ドットの作製

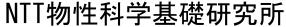
~原子ブロックで電子を閉じ込める超精密ナノ構造を実現~


Motivation どんな問題に取り組むのか?


量子ドットは、電子をナノメートルサイズの領域に閉じ込めることで、量子力学的な 効果を発揮します。「人工原子」とも呼ばれ、光・電子デバイス、量子情報処理など 様々な分野での応用が期待されています。しかし、素子が微細化するほど構造加工の 誤差の影響が大きくなるため、従来のリソグラフィーや自己形成による手法では特性 のばらつきが避けられず、微細加工の精度向上が課題とされてきました。半導体基板 表面において、原子精度で精密な量子構造の形成と特性評価が可能になれば、ウェー ハスケールの半導体技術と原子・分子制御技術の融合による新しい集積回路技術に向 けた大きな一歩となります。

Originality and Impact 新規性とインパクトは?

この技術を用いれば、原子のように特性が完全にそろった量子ドットを半導体基板上 に自由に配列することができるため、完全に波長の揃った単一光子源や、同一の特性 を持つ量子ビット列など、これまで構造の誤差によって実現が困難だった、原子レベ ルの再現性をもつ究極の量子デバイスが作製可能になります。さらにこのようなナノ 構造を多数集積化し制御することができれば、飛躍的に情報処理速度が向上した量子 コンピュータや、従来のシリコン技術の限界を超えた "Beyond CMOS" と呼ばれる次世 代技術に応用できる可能性があります。


原子精度で精密な微細構造の作製方法 STM探針 原子の「ブロック」を 原子 固定するくぼみ 原子操作 拾い上げる 置く InAs (111) A表面のSTM顕微鏡像

本研究は、NTT物性科学基礎研究所(NTT-BRL)、ポール・ドルーデ研究所(PDI)、ネイバル・リサーチ研究所(NRL)の連携により行われました。 詳細は次の論文を御参照下さい。S. Fölsch, J. Martínez-Blanco, J. Yang, K. Kanisawa, S. C. Erwin, Nature Nanotechnol. 9, 505 (2014).

