ダイヤモンドを用いた量子コンピュータ

ダイヤモンド中の量子ビットと光子を制御して量子コンピュータの基本素子を作る

NII

Motivation どんな問題に取り組むのか?

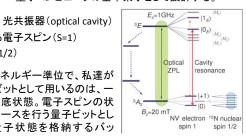
量子コンピュータや量子情報システムは、高速な情報処理や高度な測定など、将来の 情報化社会の基盤技術として期待されています。量子コンピュータを実現するためには、 量子コヒーレンスと呼ばれる量子性を保持したまま制御する必要があり、壊れやすい量 子の性質を守りながら制御するところに、その難しさがあります。本研究課題では、高い 操作性を持たせながら、量子コンピュータに必要な機能を発現する量子情報デバイスを 実験グループと共に設計し、それを元に量子コンピュータを作り上げる方法を理論的に 明確にすることを目標としています。また、これによって、開発を目指す量子情報デバイ スに必要とされる精度や、それに用いる材料の条件など、詳細にわたって理論的に検

Originality and Impact 新規性とインパクトは?

量子コンピュータは、計算能力で従来のコンピュータの限界を大きく破ると期待されていま す。量子コンピュータの実現化上の難しさのひとつは、そのサイズにあります。例えば素因 数分解でも、数が大きくなると解くのに時間がかかるように、同じ問題でも、問題の規模が 大きくなると、コンピュータもそれに従って大きくする必要があります。必要に応じて、コン ピュータを大きくできるシステムが、スケーラブルな量子コンピュータで最も標準的な性質を 備えた量子コンピュータです。本研究課題ではスケーラブルな量子コンピュータを実現する ために、ダイヤモンドを用いた素子の構成方法を、今日の技術レベルからみて達成可能な 精度で提案することに初めて成功しました。また、この素子を用いた量子コンピュータの構 成方法とその性能を示すことができ、実現化研究のゴールが明確化されました。

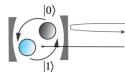
Design 量子コンピュータのための素子とは?

単一NVセンターを用いた量子モジュール


単一NVセンターと光共振器からなるモジュールを 量子コンピュータの基本素子として設計する。

討し、量子情報システム創成に役立つ素子の開発を可能にします。

NV-に出来る電子スピン(S=1)


窒素15原子の核スピン(S=1/2)

単一NVセンターが作るエネルギー準位で、私達が 量子コンピュータの量子ビットとして用いるのは、一 番エネルギーの小さい基底状態。電子スピンの状 態を光りとのインターフェースを行う量子ビットとし て、核スピンを作った量子状態を格納するバッ ファーとして用います。

単一NVセンターのエネルギーレベル

量子モジュールの機能(光とのインターフェース)

単一NVセンターの電子スピン状態に応じて、光共 振器の外から来る光子を条件的に反射します。こ れで、光子と電子スピンの間に量子的な相関(量子 エンタングルメント)を生成します。(左図参照)

量子モジュールのメモリー機能

単一NVセンター内の電子スピンと窒素15原子の核スピ ンの間には相互作用(hyperfine interaction)が働きます。 この自然の相互作用を用いて、電子スピンで作ったエン タングルメントを核スピンへ格納することができます。

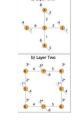
Architecture 量子コンピュータを構成する

量子モジュール間の量子エンタングルメントを生成

電子スピンと光子のエンタングルメント生成から、これを 2組用いて、2つの量子モジュールの電子スピン間にエ ンタングルメントを生成します。このエンタングルメント生 成方法は、実現化上のノイズや損失を考慮し、安定して 質の高いエンタングルメントを配信できるように設計しま した。(左図参照)

このエンタングルメント配信方法は、スケーラブルな量子 コンピュータの要請を満たすよう。 高い精度のエンタング ルメントを配信できるため、配信の成功確率は最大でも 12.5%とやや低め。これを克服するために、成功するま で繰り返します。成功したときには、それがわかるような 仕組みになっています。(右図参照)

量子コンピュータ・モデル

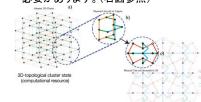

量子モジュール間のエンタングルメント生成と、量子コンピュータとはどういう 関係になっているのでしょうか。エンタングルメントは量子コンピュータには必 要であることがわかっていますが、実際にどのように使っていくのでしょう。本 研究課題では、3次元トポロジカル量子計算モデルを用いて、量子コンピュー タの構成します。このモデルでは量子モジュール間のエンタングルメントがま さに量子コンピュータの心臓部なのです。

3次元トポロジカル量子コンピュータの特徴は、量子誤り訂正と量子計算が一 体となったところにあります。量子ビットが互いに規則正しくエンタングルした 巨大なクラスター状態を量子コンピュータのリソースとして、量子計算を行い ます。

参考文献: Phys. Rev. X, K.Nemoto, et. al., 4, 031022 (2014)

本研究成果は、NTT物性科学基礎研究所、オーストリアエ科大学とNIIの共同研究に基づきます。

4 3



モジュール間のエンタングルメントで気をつけなけ ればならないことは2つ。ひとつは、エンタングル メント配信は簡単ではないので、量子コンピュータ が大きくなるしにしたがって、一つのモジュールが たくさんのモジュールとエンタングルメント配信し なくてはならないのでは大変なことになってしまい ます。3次元トポロジカル量子コンピュータではど んなにコンピュータが大きくなっても周りにある4 つのモジュールのみとエンタングルメントすればよ く、スケーラビリティを壊しません。(左図参照)

量子コンピュータのリソース、クラスターを作る

もうひとつは、となりのモジュールとエンタングルメ ントを配信しているときに、モジュール内の核スピ ンに保存している量子情報(量子状態)を壊してし まわないこと。これには設計上さまざまな仕組み を組み合わせることが必要で、制御ひとつひとつ を精査し、ノイズや損失の影響を考えて設計する 必要があります。(右図参照)

3次元クラスターの中で、物 理層として必要なのは2層 だけ。軸のひとつは時間軸 なのです。この2層を順番 にリサイクルすることで、3 次元を擬2次元にすること ができます。(左図参照)

情報システム研究機構・国立情報学研究所 情報学プリンシプル研究系