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Two Issues

The Integration of SQL and graph processing
for graph analytics

The network embedding



'Graph Processing by SQL

Graph Analytics

PageRank, Shortest Distance,
Weakly Connected Component,
Keyword Search,
Label Propagation,
Topological Sort, etc.
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The joint work of Kangfei Zhao and Jeffrey Xu Yu (SIGMOD’17)



We Have Implemented on Spark

Graph Analytics Tasks

PageRank, Shortest Distance,
Weakly Connected Component,
Hyperlink-Induced Topic SearcC
Label Propagation,
Topological Sort, etc.
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‘ Network Representations

G=(V,E) G=(V)

Low-dimensional Vector Space
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O Easy to parallel
O Can apply classical ML methods

Taken from a talk by Peng Cui



Traditional topology based network analysis Network embedding based network analysis
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Taken from the survey by Cui et al.



'Network Embedding

Traditional graph embedding o0
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Taken from the survey by Cui et al.



‘Main Techniques

= Matrix Factorization
= Random Walk
= Deep Neural Networks




The KDD’17 Tutorials

= Learning Representations of Large-Scale Networks,
Jian Tang, Cheng Li, and Qiaozhu Mei

= Network Embedding: Enabling Network Analytics and

Inference in Vector Space, Peng Cui, Jian Pei, and
Wenwu Zhu




“The Surveys on Graph Embedding

Graph Embedding Techniques, Applications, and
Performance: A Survey, Palash Goyal and Emilio Ferrara,
CoRR, May, 2017

Representation Learning on Graphs: Methods and
Applications, william L. Hamilton, Rex Ying, and Jure Leskovec,
CoRR, Sep., 2017

A Survey on Network Embedding, Peng Cui, Xiao Wang, Jian
Pei, and Wenwu Zhu, CoRR Nov., 2017

A Comprehensive Survey of Graph Embedding:
Problems, Techniques and Applications, Hongyun Cai,
Vincent W. Zheng, and Kevin Chen-Chuan Chang, CoRR, Feb., 2018
Knowledge Graph Embedding: A Survey of Approaches
and Applications, TKDE, Vol. 29, No. 12, 2017




