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Social Networks
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Cohesive Subgraphs

 One of the major issues in social networks is 

to find cohesive subgraphs. 

 Cohesive subgraphs are subsets of people 

who have relative strong, direct, intense, frequent, or 

positive ties.

 The role of social cohesiveness is discussed in social 

explanations.

 By Collins (1988): “The more tightly that individuals are 

tied into a network, the more they are affected by group 

standards”, “how many ties an individual has to the 

group and how close the entire group is to outsiders”.



Some Dense Subgraphs

 𝑘-clique: a complete subgraph of 𝑘
nodes.

 Maximal Clique Enumeration

 Maximum Clique Problem

 𝑘-core:  The maximal subgraph in 

which every node is with 𝑘-degree.

 𝑘-truss: The maximal subgraph in 

which every edge is contained in at 

least (𝑘 − 2) triangles.

 𝑘-edge-connected: The maximal 

subgraph which is connected by 

removing (𝑘 − 1) edges.

 ……



 Community Detection:

 Find all communities with
a global criterion

 Expensive computation

 Graphs evolve

 Community Search:

 Find communities for 
particular persons

 Less expensive

 Online and dynamic

query vertex
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Community Search/Detection



 An individual belongs to many social circles

Me
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Overlapping Communities



 𝜶-adjacency–𝜸-quasi-𝒌-clique community model

 𝜶-quasi-𝒌-clique: a 𝑘-node graph with at least 

⌊𝛾𝑘(𝑘 − 1)/2⌋ edges.

 𝜶-adjacency-𝜸-quasi-𝒌-clique: overlap 𝛼 vertices, where 

α ≤ k − 1.

k-cliques

(k=4)

γ-quasi-k-cliques

(γ=0.8, k=4)
α-adjacency-γ-quasi-k-cliques

(α=2, γ=0.8, k=4)

𝒌-clique: a complete 

graph of 𝑘 nodes with 

𝑘(𝑘 − 1)/2 edges. 
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OCS Method [Cui et al., SIGMOD’13]



 Given a query vertex 𝑞 in graph 𝐺, the problem is to 

find all 𝛼-adjacency-𝛾-quasi-𝑘-clique containing 𝑞.

 Limitations:

 No cohesive guarantee

 Three parameters 

 NP-hard problem

A 0.8-quasi-7-clique containing q

?
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OCS Method [Cui et al., SIGMOD’13]



Querying K-Truss Community 

in Large and Dynamic Graphs 
[SIGMOD’14]

Xin Huang, Hong Cheng, Lu Qin, Wentao

Tian, Jeffrey Xu Yu
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 𝑘-truss of graph 𝐺: the largest subgraph 𝐻 s.t. every edge 

in 𝐻 is contained in at least (𝑘 − 2) triangles within 𝐻.
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K-Truss



 Triangle adjacency: ∆1∩ ∆2 ≠ ∅

 Edge connectivity in graph 𝐺’:

 𝑒1 ∈ ∆1, 𝑒2 ∈ ∆2
 ∆1 = ∆2 or ∆1 is triangle connected with ∆2 in graph 𝐺’.
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Edge Connectivity



 A 𝑘-truss community satisfies:

(1) K-truss: each edge within at least (𝑘 − 2) triangles

(2) Edge Connectivity: all pairs of edges

(3) Maximal Subgraph
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Two 4-truss communities for 𝑞
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A K-Truss Community Model



 Cohesive structure

 Bounded diameter 

 A 𝑘-truss community with |𝐶|
vertices, the diameter is no 

larger than ⌊(2|𝐶| − 2)/𝑘⌋.

 (𝑘 − 1)-edge-connected graph

 Only one parameter to set 

 Polynomial time

q

p1

p3

p2

p4

C1

t

Diameter upper bound 

⌊(2 × 6 − 2)/4⌋ = 2

A 4-truss community
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Why K-Truss Community?



 Given a graph 𝐺(𝑉, 𝐸), a query vertex 𝑞 and an integer 

𝑘 ≥ 3, find all 𝑘-truss communities containing 𝑞.
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Problem Formulation



5-truss communities containing “Jiawei Han” in DBLP collaboration network
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Community Search: An Example



The Comparison

 5-truss community (left)

 11 4-adjacency-1.0-quasi-5-clique communities (right)

 The largest 5-truss (blue) community is decomposed into 7 smaller 

communities
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 Input:  

 Graph 𝐺(𝑉,𝐸)

 A set of query nodes 𝑄

 A goodness metric 𝑓(𝑆)

 Output:  Subgraph 𝐺[𝑆] such that:

 𝑆 contains 𝑄 (𝑄⊆ 𝑆)

 𝑓(𝑆) is maximized
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Local Community Detection [Y. Wu, 

et al. PVLDB15]
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Local Community Detection [Y. Wu, 

et al. PVLDB15]

Intuitions Goodness metrics Formulas  𝑓(𝑆)

Internal 
denseness

Classic density 𝑒 𝑆 /|𝑆|

Edge-surplus 𝑒 𝑆 − 𝛼ℎ(|𝑆|)
concave  ℎ 𝑥

ℎ 𝑥 = 𝑥
2

Minimum degree min𝑢∈𝑆 𝑤𝑆(𝑢)

Internal
denseness & 

external 
sparseness

Subgraph 
modularity

𝑒 𝑆 /𝑒(𝑆, 𝑆)

Density-isolation 𝑒 𝑆 − 𝛼 𝑒 𝑆, 𝑆 − 𝛽|𝑆|

External 
conductance

𝑒 𝑆, 𝑆 /min{𝜙 𝑆 , 𝜙(𝑆)}

Boundary 
sharpness

Local modularity 𝑒 𝛿𝑆, 𝑆 /𝑒(𝛿𝑆, 𝑉)



 Extend one query node to multiple nodes. 

 Avoid free rider effect
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Classic density: 𝑬 /|𝑽|

Local Community Detection [Y. Wu, 

et al. PVLDB15]



 Compute the proximity value of each 

node with regard to the query nodes, 

denoted 𝑟(∙).

 The reciprocal of the proximity value is 

used as the node weight, denoted 

𝜋 𝑢 = 1/𝑟(𝑢).

 The query biased density is 𝜌 𝑆 =
𝑒(𝑆)

𝜋(𝑆)

where 𝑆 is a set of nodes.

 Find query biased densest connected 

subgraph with max 𝜌(𝑆), where 𝑄 ⊆ 𝑆
and 𝐺[𝑆] is connected.
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Query Biased Density [Y. Wu, et al. 

PVLDB15]



Approximate Closet Community 

Search [PVLDB’16]

Xin Huang, Laks V.S. Lakshmanan, Jeffrey 

Xu Yu, Hong Cheng
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 Graph Diameter of 𝐺: 

 Query Distance for a vertex 𝑣 and a subgraph 𝐻 in 𝐺:

 Lower and upper bounds of graph diameter: 
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Our Approach



An Example

 Consider a query with two 

query nodes, 𝑄 = {𝑞1, 𝑞2}.

 𝐺, 𝐺1, and 𝐺2 are 4-trusses 

containing 𝑄.

 The query distance of 𝑟 in 𝐺
is 3. The query distance of 

𝐺 is 3. 

 The query distance of 𝑣 in 

𝐺1 is 2. But, the diameter of 

𝐺1 is 3 (between 𝑣 and 𝑝).

 The query distance in 𝐺2 is 

2. The diameter of 𝐺2 is 2.

23



 Input:

 graph 𝐺

 a set of query nodes 𝑄

 Output: a connected subgraph 𝐻 containing 𝑄 such that

 𝐻 is a 𝑘-truss with the largest 𝑘

 𝐻 is with the smallest diameter 
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Our Problem Definition
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A Case Study: DBLP network
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Community search on DBLP network using query Q={ “Xuemin Lin”, “Jeffrey Xu Yu”, 
“Nick Koudas”, “Dimitris Papadias” }

(a) QDC

(b) Closest Truss community



A Case Study
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Community search on DBLP network using query Q={ “Alon Y. 

Halevy”, “Michael J. Franklin”, “Jeffrey D. Ullman”, “Jennifer 

Widom” }

(a) 9-truss (b) Closest Truss community



More to Explore Next

 There are many large networks. 

 Online Social Networks

 Location Based Social Networks

 Road/Transportation Networks

 There are issues related to social commerce and online 

shopping

 It is possible to know where you are and when/what you 

call/buy.

 There are many research opportunities.
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