Searching Communities in Large Social Networks

Jeffrey Xu Yu (于旭)

The Chinese University of Hong Kong

yu@se.cuhk.edu.hk, http://www.se.cuhk.edu.hk/~yu

Social Networks

Cohesive Subgraphs

- One of the major issues in social networks is to find cohesive subgraphs.
- Cohesive subgraphs are subsets of people who have relative strong, direct, intense, frequent, or positive ties.
- The role of social cohesiveness is discussed in social explanations.
- By Collins (1988): "The more tightly that individuals are tied into a network, the more they are affected by group standards", "how many ties an individual has to the group and how close the entire group is to outsiders".

Some Dense Subgraphs

- k-clique: a complete subgraph of k nodes.
 - Maximal Clique Enumeration
 - Maximum Clique Problem
- k-core: The maximal subgraph in which every node is with k-degree.
- k-truss: The maximal subgraph in which every edge is contained in at least (k 2) triangles.
- k-edge-connected: The maximal subgraph which is connected by removing (k-1) edges.

-

Community Search/Detection

- Community Detection:
 - Find all communities with a global criterion
 - Expensive computation
 - Graphs evolve
- Community Search:
 - Find communities for particular persons
 - Less expensive
 - Online and dynamic

Overlapping Communities

An individual belongs to many social circles

OCS Method [Cui et al., SIGMOD'13]

- α -adjacency– γ -quasi-k-clique community model
 - □ α -quasi-k-clique: a k-node graph with at least $\lfloor \gamma k(k-1)/2 \rfloor$ edges.
 - □ α -adjacency- γ -quasi-k-clique: overlap α vertices, where $\alpha \le k 1$.

k-clique: a complete graph of k nodes with k(k-1)/2 edges.

γ-qu**la-siliqueis**ques (γ=**0l-8-4)**=4)

OCS Method [Cui et al., SIGMOD'13]

- Given a query vertex q in graph G, the problem is to find all α -adjacency- γ -quasi-k-clique containing q.
- Limitations:
 - No cohesive guarantee
 - Three parameters
 - NP-hard problem

A 0.8-quasi-7-clique containing q

Querying K-Truss Community in Large and Dynamic Graphs [SIGMOD'14]

Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, Jeffrey Xu Yu

K-Truss

• k-truss of graph G: the largest subgraph H s.t. every edge in H is contained in at least (k-2) triangles within H.

Edge Connectivity

- Triangle adjacency: $\Delta_1 \cap \Delta_2 \neq \emptyset$
- Edge connectivity in graph G':

 - $\Delta_1 = \Delta_2$ or Δ_1 is triangle connected with Δ_2 in graph G'.

A K-Truss Community Model

- A k-truss community satisfies:
 - (1) K-truss: each edge within at least (k-2) triangles
 - (2) Edge Connectivity: all pairs of edges

Why K-Truss Community?

- Cohesive structure
 - Bounded diameter
 - A k-truss community with |C| vertices, the diameter is no larger than [(2|C| - 2)/k].
 - \square (k-1)-edge-connected graph
- Only one parameter to set
- Polynomial time

Diameter upper bound $|(2 \times 6 - 2)/4| = 2$

Problem Formulation

Given a graph G(V, E), a query vertex q and an integer $k \geq 3$, find all k-truss communities containing q.

Community Search: An Example

5-truss communities containing "Jiawei Han" in DBLP collaboration network

The Comparison

- 5-truss community (left)
- 11 4-adjacency-1.0-quasi-5-clique communities (right)
- The largest 5-truss (blue) community is decomposed into 7 smaller communities

Local Community Detection [Y. Wu, et al. PVLDB15]

- Input:
 - \Box Graph G(V,E)
 - A set of query nodes Q
 - \Box A goodness metric f(S)
- Output: Subgraph G[S] such that:
 - \Box S contains $Q (Q \subseteq S)$
 - f(S) is maximized

Local Community Detection [Y. Wu, et al. PVLDB15]

Intuitions	Goodness metrics	Formulas $f(S)$	
Internal denseness	Classic density	e(S)/ S	
	Edge-surplus	$e(S) - \alpha h(S)$	concave $h(x)$ $h(x) = {x \choose 2}$
	Minimum degree	$\min_{u \in S} w_S(u)$	
Internal denseness & external sparseness	Subgraph modularity	$e(S)/e(S,\overline{S})$	
	Density-isolation	$e(S) - \alpha \ e(S, \overline{S}) - \beta S $	
	External conductance	$e(S,\overline{S})/\min\{\phi(S),\phi(\overline{S})\}$	
Boundary sharpness	Local modularity	$e(\delta S, S)/e(\delta S, V)$	

Local Community Detection [Y. Wu, et al. PVLDB15]

- Extend one query node to multiple nodes.
- Avoid free rider effect

Classic density: |E|/|V|

Goodness metrics	Α	A U B	A U C
Classic density	2.50	2.95	2.83
Edge-surplus	15.3	26.5	22.8
Minimum degree	4	4	4
Subgraph modularity	2.0	3.6	4.6
Density-isolation	-2.6	3.8	1.5
Ext. conductance	0.25	0.14	0.11
Local modularity	0.63	0.70	0.78

Query Biased Density [Y. Wu, et al. PVLDB15]

- Compute the proximity value of each node with regard to the query nodes, denoted r(·).
- The reciprocal of the proximity value is used as the node weight, denoted $\pi(u) = 1/r(u)$.
- The query biased density is $\rho(S) = \frac{e(S)}{\pi(S)}$ where S is a set of nodes.
- Find query biased densest connected subgraph with max $\rho(S)$, where $Q \subseteq S$ and G[S] is connected.

Approximate Closet Community Search [PVLDB'16]

Xin Huang, Laks V.S. Lakshmanan, Jeffrey Xu Yu, Hong Cheng

Our Approach

- Graph Diameter of G: diam $(G) = \max_{u,v \in G} \{ dist_G(u,v) \}$
- Query Distance for a vertex v and a subgraph H in G:

$$dist_G(v,Q) = \max_{q \in Q} dist_G(v,q)$$

$$dist_G(H,Q) = \max_{u \in H} dist_G(u,Q) = \max_{u \in H, q \in Q} dist_G(u,q)$$

Lower and upper bounds of graph diameter:

$$\mathsf{dist}_G(G,Q) \leq \mathsf{diam}(G) \leq 2\mathsf{dist}_G(G,Q)$$

(a) Graph G

(b) Closest Truss Community for Q={q₁, q₂, q₃}

An Example

- Consider a query with two query nodes, $Q = \{q_1, q_2\}$.
- G, G_1 , and G_2 are 4-trusses containing Q.
- The query distance of r in G is 3. The query distance of G is 3.
- The query distance of v in G_1 is 2. But, the diameter of G_1 is 3 (between v and p).
- The query distance in G_2 is 2. The diameter of G_2 is 2.

Our Problem Definition

- Input:
 - graph G
 - a set of query nodes Q
- Output: a connected subgraph H containing Q such that
 - \blacksquare H is a k-truss with the largest k
 - H is with the smallest diameter

A Case Study: DBLP network

Community search on DBLP network using query Q={ "Xuemin Lin", "Jeffrey Xu Yu", "Nick Koudas", "Dimitris Papadias" }

25

A Case Study

(b) Closest Truss community

Community search on DBLP network using query Q={ "Alon Y. Halevy", "Michael J. Franklin", "Jeffrey D. Ullman", "Jennifer Widom" }

More to Explore Next

- There are many large networks.
 - Online Social Networks
 - Location Based Social Networks
 - Road/Transportation Networks
- There are issues related to social commerce and online shopping
 - It is possible to know where you are and when/what you call/buy.
- There are many research opportunities.

